Advertisement

Bioactive Compounds in Southern African Fruits

  • Dharini SivakumarEmail author
  • Fabienne Remize
  • Cyrielle Garcia
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

South Africa is a home to many indigenous fruits. The popularity of including plant-based antioxidants in the diet is increasing due to their health benefits. Kei apple, Natal plum, monkey orange, and marula are common Southern African fruits. Although they are found in the wild, they are commercially grown to produce traditional processed products. This review describes the fruit morphology; bioactive compounds such as phenolic acids, flavonoids, ascorbic acid, and amino acids; antioxidant properties; and biological activities present in Southern African fruits such as Kei apple, Natal plum, monkey orange, and marula and their health benefits.

Keywords

African indigenous fruits Carissa macrocarpa Dovyalis caffra Flavonoids Sclerocarya birrea 

Abbreviations

DW

Dry weight

FRAP

Ferric reducing antioxidant power

GAE

Gallic acid equivalent

HDL

High-density lipoprotein cholesterol

HPLC

High-performance liquid chromatography

LDL

Low-density lipoprotein cholesterol

ROS

Reactive oxygen species

Notes

Acknowledgments

The financial support from the Department of Science and Technology/National Research Foundation and the South African Research Chair Initiative Programme for Phytochemical Food Network Grant No. 98352 is greatly acknowledged.

References

  1. 1.
    Chivandi E, Mukonowenzou N, Nyakudya T, Erlwanger KH (2015) Potential of indigenous fruit-bearing trees to curb malnutrition, improve household food security, income and community health in Sub-Saharan Africa: a review. Food Res Int 76:980–985.  https://doi.org/10.1016/j.foodres.2015.06.015CrossRefGoogle Scholar
  2. 2.
    Shackleton CM, Shackleton SE, Buiten E, Bird N (2007) The importance of dry woodlands and forests in rural livelihoods and poverty alleviation in South Africa. Forest Policy Econ 9:558–577.  https://doi.org/10.1016/j.forpol.2006.03.004CrossRefGoogle Scholar
  3. 3.
    Morton J (1987) Kei Apple. In: Morto JF (ed) Fruits of warm climates, 1st edn. Creative Resource Systems, Inc, MiamiGoogle Scholar
  4. 4.
    Jofee P, Oberholzev T (2007) Creative gardening with indigenous plants. A South African guide. Kirstenbosch, Cape TownGoogle Scholar
  5. 5.
    Koorbanally N, Jonnalagadda SB, Moodley R (2012) Elemental composition and fatty acid profile of the edible fruits of Amatungula (Carissa macrocarpa) and impact of soil quality on chemical characteristics. Anal Chim Acta 730:33–41.  https://doi.org/10.1016/j.aca.2011.11.066CrossRefPubMedGoogle Scholar
  6. 6.
    Van wyk BE (2011) The potential of South African plants in the development of new food and beverage products. S Afr J Bot 77:857–868CrossRefGoogle Scholar
  7. 7.
    Aljeshi YM, Khalil HE, Saleh FA (2015) Authentication of Carissa macrocarpa cultivated in Saudi Arabia; botanical, phytochemical and genetic study. J Pharm Sci Res 7:497–508Google Scholar
  8. 8.
    Kucich DA, Wicht MM (2016) South African indigenous fruits-underutilized resource for boosting daily antioxidant intake among local indigent populations? S Afr J Clin Nutr 29:150–156.  https://doi.org/10.1080/16070658.2016.1219470CrossRefGoogle Scholar
  9. 9.
    Mojeremane W, Tshwenyane SO (2004) The resource role of morula (Sclerocarya birrea): a multipurpose indigenous fruit tree of Botswana. J Biol Sci 4:771–775.  https://doi.org/10.3923/jbs.2004.771.775CrossRefGoogle Scholar
  10. 10.
    Hillman Z, Mizrahi Y, Beit-Yannai E (2008) Evaluation of valuable nutrients in selected genotypes of marula (Sclerocarya birrea ssp. caffra). Sci Hortic 117:321–328.  https://doi.org/10.1016/j.scienta.2008.05.008CrossRefGoogle Scholar
  11. 11.
    Hiwilepo-van Hal P, Bosschaart C, van Twisk C, Verkerk R, Dekker M (2012) Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits. LWT Food Sci Technol 49:188–191.  https://doi.org/10.1016/j.lwt.2011.12.038CrossRefGoogle Scholar
  12. 12.
    Amarteifio JO, Mosase MO (2006) The chemical composition of selected indigenous fruits of Botswana. J Appl Sci Environ Manag 10:43–47Google Scholar
  13. 13.
    Eromosele IC (1991) Evaluation of mineral elements and ascorbic acid contents in fruits of some wild plants. Plant Foods Hum Nutr 41:151–154CrossRefGoogle Scholar
  14. 14.
    Wehmeyer AS (1966) The nutrient composition of some edible wild fruit found in the Transvaal. S Afr Med J 40:1102–1104PubMedGoogle Scholar
  15. 15.
    Sitrit Y, Loison S, Ninio R, Dishon E, Bar E, Lewinsohn E, Mizrahi Y (2003) Characterization of monkey orange (Strychnos spinosa Lam.), a potential new crop for arid regions. J Agric Food Chem 512:16256–16260.  https://doi.org/10.1021/jf030289eCrossRefGoogle Scholar
  16. 16.
    Ngadze RT, Linnemann AR, Nyanga LR, Fogliano V, Verkerk R (2017a) Local processing and nutritional composition of indigenous fruits: the case of monkey orange (Strychnos spp.) from Southern Africa. Food Rev Int 33:123–142.  https://doi.org/10.1080/87559129.2016.1149862CrossRefGoogle Scholar
  17. 17.
    Saka J, Rapp I, Akinnifesi F, Ndolo V, Mhango J (2007) Physicochemical and organoleptic characteristics of Uapaca kirkiana, Strychnos cocculoides, Adansonia digitata and Mangifera indica fruit products. Int J Food Sci Technol 42:836–841.  https://doi.org/10.1111/j.1365-2621.2006.01294.xCrossRefGoogle Scholar
  18. 18.
    Akinnifesi F (2007) Indigenous fruit trees in the tropics domestication, utilization and commercialization. CABI, WallingfordCrossRefGoogle Scholar
  19. 19.
    Ngadze R, Verkerk R, Nyanga L, Fogliano V, Linnemann AR (2017) Improvement of traditional processing of local monkey orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Sec 9:621–633.  https://doi.org/10.1007/s12571-017-0679-xCrossRefGoogle Scholar
  20. 20.
    Liu RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4:384S–392S.  https://doi.org/10.3945/an.112.003517CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lima GPP, Vianello F, Corrêa CR, Da Silvacampos RA, Borguini MG (2012) Polyphenols in fruits and vegetables and its effect on human health. Food Nutr Sci 5:1065–1082.  https://doi.org/10.4236/fns.2014.511117CrossRefGoogle Scholar
  22. 22.
    Kalaba FK (2007) The role of indigenous fruits trees in rural livelihood: a case of the Mwekeraerae, Copperbelt province, Zambia. Desertion, University of StellenboschGoogle Scholar
  23. 23.
    Chakrabarti S, Guha S, Majumder K (2018) Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients 10(1738):1–17.  https://doi.org/10.3390/nu10111738CrossRefGoogle Scholar
  24. 24.
    de Beer T (2006) Polyphenols, ascorbate and antioxidant capacity of the Kei-apple (Dovyalis caffra). Desertion, North-West UniversityGoogle Scholar
  25. 25.
    Loots D, Van der Westhuizen FH, Jerling JF (2006) Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice. J Agric Food Chem 54:1271–1276CrossRefGoogle Scholar
  26. 26.
    Mpai S, du Preez R, Sultanbawa Y, Sivakumar D (2018) Phytochemicals and nutritional composition in accessions of Kei-apple (Dovyalis caffra): Southern African indigenous fruit. Food Chem 253:37–45.  https://doi.org/10.1016/j.foodchem.2018.01.099CrossRefPubMedGoogle Scholar
  27. 27.
    Minnaar PP, Jolly NP, Paulsen V, Du Plessis HW, Van Der Rijst M (2017) Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Int J Food Microbiol 257:232–237.  https://doi.org/10.1016/j.ijfoodmicro.2017.07.004CrossRefPubMedGoogle Scholar
  28. 28.
    Augustyn WA, Regnier T, De Jager K, Hajari E, Du Preez R, Nonyane D (2018) A preliminary study on the chemical characteristics of Kei apple (Dovyalis caffra), an undervalued South African fruit. S Afr J Bot 117:268–275.  https://doi.org/10.1016/j.sajb.2018.05.032CrossRefGoogle Scholar
  29. 29.
    Taher MA, Tadros LK, Dawood DH (2018) Phytochemical constituents, antioxidant activity and safety evaluation of Kei-apple fruit (Dovyalis caffra). Food Chem 265:144–151.  https://doi.org/10.1016/j.foodchem.2018.05.099CrossRefPubMedGoogle Scholar
  30. 30.
    Udenigwe CC, Aluko RE (2011) Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int J Mol Sci 12:3148–3161.  https://doi.org/10.3390/ijms12053148CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kubola J, Meeso N, Siriamornpun S (2011) Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chem 126:972–981.  https://doi.org/10.1016/j.foodchem.2010.11.104CrossRefGoogle Scholar
  32. 32.
    Akter MS, Oh S, Eun JB, Ahmed M (2011) Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: a review. Food Res Int 44:1728–1732CrossRefGoogle Scholar
  33. 33.
    Ndou A, Tinyani PP, Slabbert RM, Sultanbawa SD (2019) An integrated approach for harvesting Natal plum (Carissa macrocarpa) for quality and functional compounds related to maturity stages. Food Chem 293:499–510.  https://doi.org/10.1016/j.foodchem.2019.04.102CrossRefPubMedGoogle Scholar
  34. 34.
    Michalska A, Łysiak G (2015) Bioactive compounds of blueberries: post-harvest factors influencing the nutritional value of products. Int J Mol Sci 16:18642–18663CrossRefGoogle Scholar
  35. 35.
    Khoo HEK, Azlan A, Teng S, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779.  https://doi.org/10.1080/16546628.2017.1361779CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Konczak I, Netzel G, Netzel M, Schwartz S, Tian Q (2007) Native Australian fruits-a novel source of antioxidants for food. Innov Food Sci Emerg Technol 8:339–346.  https://doi.org/10.1016/j.ifset.2007.03.007CrossRefGoogle Scholar
  37. 37.
    Alves RE, Carkeet C, Clevidence BA, De Araujo MCP, De Brito ES, Novotny JA (2007) Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara, and guajiru. J Agric Food Chem 55:9389–9394CrossRefGoogle Scholar
  38. 38.
    Du Q, Jerz G, Winterhalter P (2004) Isolation of two anthocyanin sambubiosides from bilberry (Vaccinium myrtillus) by high-speed counter-current chromatography. J Chromatogr A 1045:59–63.  https://doi.org/10.1016/j.chroma.2004.06.017CrossRefPubMedGoogle Scholar
  39. 39.
    Natić MM, Dabić-Zagorac D, Papetti A, Fotirić-Akšić MM, Ognjanov V, Ljubojević M, Tešić Ž (2015) Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem 171:128–136CrossRefGoogle Scholar
  40. 40.
    Chen L, Xin X, Lan R, Yuan Q, Wang X, Li Y (2014) Isolation of cyanidin 3-glucoside from blue honeysuckle fruits by high-speed counter-current chromatography. Food Chem 152:386–390.  https://doi.org/10.1016/j.foodchem.2013.11.080CrossRefPubMedGoogle Scholar
  41. 41.
    Bushakra JM, Krieger C, Deng D, Stephens MJ, Allan AC, Storey R, Vaughan Symonds V, Stevenson D (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126:847–865CrossRefGoogle Scholar
  42. 42.
    Betalleluz-Pallardel I, Campos D, Chirinos R, Galarza J, Pedreschi R (2010) Antioxidant compounds and antioxidant capacity of Peruvian camucamu (Myrciaria dubia (HBK) McVaugh) fruit at different maturity stages. Food Chem 120:1019–1024.  https://doi.org/10.1016/j.foodchem.2009.11.041CrossRefGoogle Scholar
  43. 43.
    Brownmille C, Howard LR, Lestario LN, Liyanage R, Lay JO, Stebbins NB (2017) Changes in polyphenolics during maturation of Java plum (Syzygium cumini Lam.). Food Res Int 100:385–391.  https://doi.org/10.1016/j.foodres.2017.04.023CrossRefGoogle Scholar
  44. 44.
    Ndou A (2018) Maturity indices and phytochemical changes in Carissa macrocarpa (Natal plum) for the development of functional ingredients. Desertion, Tshwane University of TechnologyGoogle Scholar
  45. 45.
    Chen L, Liu W, Su D, Xin X, Yuan Q (2014) Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric 94:180–188CrossRefGoogle Scholar
  46. 46.
    Olivas-Aguirre FJ, Rodrigo-García J, Martínez-Ruiz NR, Cárdenas-Robles AI, Mendoza-Díaz SO, Álvarez-Parrilla E, González-Aguilar GA, de la Rosa LA, Ramos-Jiménez A, Wall-Medrano A (2016) Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 21:1264.  https://doi.org/10.3390/molecules21091264CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Song N, Ling Z, Chen W, Zhu H, Deng W, Han Y, Guo J, Qin C (2016) Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APPswe/PS1ΔE9 mouse model. Biochim Biophys Acta 1862:1786–1800CrossRefGoogle Scholar
  48. 48.
    Lee KS, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220CrossRefGoogle Scholar
  49. 49.
    Bello MO, Falade OS, Adewusi SRA, Olawore NO (2008) Studies on the chemical compositions and anti nutrients of some lesser known Nigeria fruits. Afr J Biotechnol 7:3972–3979Google Scholar
  50. 50.
    Hiwilepo-van HP, Bosschaart C, van Twisk C, Verkerk R, Dekker M (2012) Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp. caffra) as compared to other selected tropical fruits. LWT Food Sci Technol 49:188–191CrossRefGoogle Scholar
  51. 51.
    Ndhlala AR, Kasiyamhuru A, Mupure C, Chitindingu K, Benhura MA, Muchuweti M (2007) Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea. Food Chem 103:82–87.  https://doi.org/10.1016/j.foodchem.2006.06.066CrossRefGoogle Scholar
  52. 52.
    Lamien-Meda A, Lamien CE, Compaoré MMY, Meda RNT, Kiendrebeogo M, Zeba B, Millogo JF, Nacoulma OG (2008) Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 13:581–594.  https://doi.org/10.3390/molecules13030581CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Borochov-Neori H, Judeinstein S, Greenberg A, Fuhrman B, Attias J, Volkova N, Hayek T, Aviram M (2008) Phenolic antioxidants and antiatherogenic effects of Marula (Sclerocarrya birrea Subsp. caffra) fruit juice in healthy humans. J Agric Food Chem 56:9884–9891.  https://doi.org/10.1021/jf801467mCrossRefPubMedGoogle Scholar
  54. 54.
    Mdluli KM, Owusu-Apenten R (2003) Enzymatic browning in marula fruit 1: effect of endogenous antioxidants on marula fruit polyphenol oxidase. J Food Biochem 27:67–82.  https://doi.org/10.1111/j.1745-4514.2003.tb00267.xCrossRefGoogle Scholar
  55. 55.
    Aganga AA, Mosase KW (2001) Tanin content, nutritive value and dry matter digestibility of Lonchocarpus capassa, Zizyphus mucronata, Sclerocarya birrea, Kirkia acuminate and Rhus lancea seeds. Anim Feed Sci Technol 91:107–113.  https://doi.org/10.1016/S0377-8401(01)00235-8CrossRefGoogle Scholar
  56. 56.
    Mariod AA, Matthaüs B, Idris YMA, Abdelwahab SI (2010) Fatty acids, tocopherols, phenolics and the antimicrobial effect of Sclerocarya birrea kernels with different harvesting dates. J Am Oil Chem Soc 87:377–384CrossRefGoogle Scholar
  57. 57.
    Burger AEC, de Villiers JBM, du Plessis LM (1987) Composition of the kernel oil and protein of the marula seed. S Afr J Sci 83:733–735.  https://doi.org/10.1080/87559129.2012.660716CrossRefGoogle Scholar
  58. 58.
    Nhukarume L, Chikwambi H, Muchuweti M, Chipurura B (2010) Phenolic content and antioxidant capacities of Parinari curatellifolia, Strychnos spinosa and Adansonia digitata. J Food Biochem 34:207–221.  https://doi.org/10.1111/j.1745-4514.2009.00325.xCrossRefGoogle Scholar
  59. 59.
    Ngadze RT, Linnemann AR, Fogliano V, Verkerk R (2019) Monkey orange fruit juice improves the nutritional quality of a maize-based diet. Food Res Int 116:870–877.  https://doi.org/10.1016/j.foodres.2018.09.022CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dharini Sivakumar
    • 1
    Email author
  • Fabienne Remize
    • 2
  • Cyrielle Garcia
    • 2
  1. 1.Department of Crop SciencesTshwane University of TechnologyPretoria WestSouth Africa
  2. 2.University of La Réunion, UMR Quail Sud, Parc Technologique UniversitaireSanteClotideFrance

Section editors and affiliations

  • Vishwas A. Bapat
    • 1
  1. 1.Department of BiotechnologyShivaji UniversityKolhapurIndia

Personalised recommendations