Advertisement

Bioactive Compounds of Red-Jambo Fruit (Syzygium malaccense (L.) Merr. & L.M. Perry)

  • Ângela Giovana BatistaEmail author
  • Juliana Kelly da Silva-Maia
  • Mário Roberto Maróstica Júnior
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Red-jambo is a phenolic compound-rich fruit found in tropical areas of Malaysia and other warm regions of Asia and South America. The phytochemical composition including dietary fibers, phenolic compounds, carotenoids, and volatile compounds of red-jambo fruit has been highlighted along the chapter, as well as antioxidant capacity of its edible parts. The main phenolic compounds in red-jambo are anthocyanins, such as cyanidin-3-O-glucoside, cyanidin-3,5-O-diglucoside, and peonidin-3-O-glucoside concentrated in the peel. Isorhamnetin-3-O-glucoside, quercetin derivatives, catechins, and procyanidins are other flavonoids present mainly in red-jambo fruit peel. The phenolic compounds of the fruit contribute to the majority of the total antioxidant capacity of red-jambo. As potential to functional properties, in vitro studies showed antiproliferative effects of red-jambo fruit extracts against breast and liver tumor cell lines. The bioactive compounds of red-jambo incite investigation on possible relation with in vivo functional properties, mainly with regard to anticancer activity.

Keywords

Cyanidin Flavonoids Malay apple Myrtaceae Syzygium malaccense 

Abbreviations

ABTS

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

C3G

Cyanidin 3-glucoside equivalents

CAA

Cellular antioxidant activity assay

CE

Catechin equivalents

DPPH

2,2-Diphenyl-1-picrylhydrazyl assay

FLD

Fluorescence detector

FRAP

Ferric reducing antioxidant power assay

GAE

Gallic acid equivalents

HepG2

Human hepatoma cell line

H-ORAC

Hydrophilic oxygen radical absorbance capacity assay

HPLC

High-performance liquid chromatography

L-ORAC

Lipophilic oxygen radical absorbance capacity assay

MCF-7

Hormone-dependent breast cancer cell line

MDA-MB-231

Nonhormone-dependent breast cancer cell line

ORAC

Oxygen radical absorbance capacity assay

PDA

Diode array detector

PSC

Peroxyl radical scavenging capacity assay

QE

Quercetin equivalents

TE

Trolox equivalents

TEAC

Trolox equivalent antioxidant capacity assay

UV/Vis

Ultraviolet visible detector

VitCE

Vitamin C equivalents

ww

Wet weight

Notes

Acknowledgments

This study was partly supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Finance Code 001); Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (403328/2016-0; 301108/2016-1); and Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2015/50333-1; 2018/11069-5).

References

  1. 1.
    Morton JF (1987) Malay apple. In: Morton JF (ed) Fruits of warm climates. Creative Resources Systems, MiamiGoogle Scholar
  2. 2.
    Wong K, Lai F (1996) Volatile constituents from the fruits of four Syzygium species grown in Malaysia. Flavour Fragr J 11:61–66CrossRefGoogle Scholar
  3. 3.
    Ikram EHK, Eng KH, Jalil AMM, Ismail A, Idris S, Azlan A, Nazri HSM, Diton NAM, Mokhtar RAM (2009) Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J Food Compos Anal 22:388–393CrossRefGoogle Scholar
  4. 4.
    Sankat C, Basanta A, Maharaj V (2000) Light mediated red colour degradation of the pomerac (Syzygium malaccense) in refrigerated storage. Postharvest Biol Technol 18:253–257CrossRefGoogle Scholar
  5. 5.
    Weisler M, Murakami GM (1991) The use of mountain-apple (Syzygium malaccense) in a prehistoric Hawaiian domestic structure. Econ Botany 45:282–285Google Scholar
  6. 6.
    Emanuel M, Benkeblia N (2013) Variation of reducing and total sugars, total phenolics and anthocyanins in otaheite (Syzygium Malaccense l.) during three “on tree” ripening stages. Acta Hortic 1012:161–164CrossRefGoogle Scholar
  7. 7.
    Batista ÂG, Da Silva JK, Betim Cazarin CB, Biasoto ACT, Sawaya ACHF, Prado MA, Maróstica Júnior MR (2017) Red-jambo (Syzygium malaccense): bioactive compounds in fruits and leaves. LWT Food Sci Technol 76:284–291CrossRefGoogle Scholar
  8. 8.
    Lako J, Trenerry VC, Wahlqvist M, Wattanapenpaiboon N, Sotheeswaran S, Premier R (2007) Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101:1727–1741CrossRefGoogle Scholar
  9. 9.
    Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly EJ (2008) Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem 109:883–890PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maisuthisakul P, Pasuk S, Ritthiruangdej P (2008) Relationship between antioxidant properties and chemical composition of some Thai plants. J Food Compos Anal 21:229–240CrossRefGoogle Scholar
  11. 11.
    Andersson Dunstan C, Noreen Y, Serrano G, Cox PA, Perera P, Bohlin L (1997) Evaluation of some Samoan and Peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. J Ethnopharmacol 57:35–56CrossRefGoogle Scholar
  12. 12.
    Arumugam B, Manaharan T, Heng CK, Kuppusamy UR, Palanisamy UD (2014) Antioxidant and antiglycemic potentials of a standardized extract of Syzygium malaccense. LWT Food Sci Technol 59:707–712CrossRefGoogle Scholar
  13. 13.
    Savitha RC, Padmavathy S, Sundhararajan A (2011) In vitro antioxidant activities on leaf extracts of Syzygium Malaccense (L.) merr and perry. Anc Sci Life 30:110–113PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bairy KL, Sharma A, Shalini A (2005) Evaluation of the hypoglycemic, Hypolipidaemic and hepatic glycogen raising effects of Syzygium malaccense upon Streptozotocin induced diabetic rats. J Nat Rem 5:46–51Google Scholar
  15. 15.
    Santos PH, Silva LHMD, Rodrigues AMDC, Souza JARD (2016) Influence of temperature, concentration and shear rate on the rheological behavior of Malay apple (Syzygium malaccense) juice. Braz J Food Technol 19:e2015009Google Scholar
  16. 16.
    Nunes PC, Aquino JS, Rockenbach II, Stamford TLM (2016) Physico-chemical characterization, bioactive compounds and antioxidant activity of Malay apple [Syzygium malaccense (L.) Merr. & L.M. Perry]. PLoS One 11:e0158134PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Augusta IM, Resende JM, Borges SV, MCA M, MAPG C (2010) Caracterização física e química da casca e polpa de jambo vermelho (Syzygium malaccensis (L.) Merryl & Perry). Ciencia E Tecnologia De Alimentos 30:928–936CrossRefGoogle Scholar
  18. 18.
    Oliveira FP, Gallão M, Rodrigues S, Fernandes F (2011) Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food Bioprocess Technol 4:610–615CrossRefGoogle Scholar
  19. 19.
    Cardoso RL (2008) Estabilidade da cor de geléia de jambo (Eugenia malaccensis, l.) sem casca armazenada aos 25 °C e 35 °C na presença e ausência de luz. Ciência e Agrotecnologia 32:1563–1567CrossRefGoogle Scholar
  20. 20.
    Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8:e80476PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA (1991) Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr 53:1418–1424PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Batista ÂG, da Silva-Maia JK, Mendonça MCP, Soares ES, Lima GC, Bogusz Junior S, da Cruz-Höfling MA, Maróstica Júnior MR (2018) Jaboticaba berry peel intake increases short chain fatty acids production and prevent hepatic steatosis in mice fed high-fat diet. J Funct Foods 48:266–274CrossRefGoogle Scholar
  23. 23.
    Kotepong P, Ketsa S, van Doorn WG (2011) A white mutant of Malay apple fruit (Syzygium malaccense) lacks transcript expression and activity for the last enzyme of anthocyanin synthesis, and the normal expression of a MYB transcription factor. Funct Plant Biol 38:75–86CrossRefGoogle Scholar
  24. 24.
    Vuolo MM, Batista ÂG, Biasoto ACT, Correa LC, Júnior MRM, Liu RH (2019) Red-jambo peel extract shows antiproliferative activity against HepG2 human hepatoma cells. Food Res Int 124:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lim ASL, Rabeta MS (2012) Proximate analysis mineral content and antioxidant capacity of milk apple, malay apple and water apple. Int Food Res J 20:673–679Google Scholar
  26. 26.
    Prior RL, Hoang H, Gu LW, Wu XL, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang DJ, Ou BX, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agr Food Chem 51:3273–3279CrossRefGoogle Scholar
  27. 27.
    Davalos A, Gomez-Cordoves C, Bartolome B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Adom KK, Liu RH (2005) Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J Agric Food Chem 53:6572–6580PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Marques Peixoto F, Fernandes I, Gouvêa ACMS, Santiago MCPA, Galhardo Borguini R, Mateus N, Freitas V, Godoy RLO, Ferreira IMPLVO (2016) Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. J Funct Foods 24:373–381CrossRefGoogle Scholar
  30. 30.
    Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42CrossRefGoogle Scholar
  31. 31.
    Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006CrossRefGoogle Scholar
  32. 32.
    Khoo H, Ismail A, Mohd-Esa N, Idris S (2008) Carotenoid content of underutilized tropical fruits. Plant Foods Hum Nutr 63:170–175PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pino JA, Marbot R, Rosado A, Vazquez C (2004) Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. & Perry]. Flavour Fragrance J 19:32–35CrossRefGoogle Scholar
  34. 34.
    Ismail IS, Ismail N, Lajis N (2010) Ichthyotoxic properties and essential oils of Syzygium malaccense (Myrtaceae). Pertanika J Sci Technol 18:1–6Google Scholar
  35. 35.
    Zhu YJ, Zhou HT, Hu YH, Tang JY, Su MX, Guo YJ, Chen QX, Liu B (2011) Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem 124:298–302CrossRefGoogle Scholar
  36. 36.
    Han TL, Tumanov S, Cannon RD, Villas-Boas SG (2013) Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. PLoS One 8:e71364PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Haehner A, Tosch C, Wolz M, Klingelhoefer L, Fauser M, Storch A, Reichmann H, Hummel T (2013) Olfactory training in patients with Parkinson's disease. PLoS One 8:e61680PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jiang RS, Twu CW, Liang KL (2017) The effect of olfactory training on the odor threshold in patients with traumatic anosmia. Am J Rhinol Allergy 31:317–322PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Batista ÂG, Soares ES, Mendonça MCP, da Silva JK, Dionísio AP, Sartori CR, da Cruz-Höfling MA, Maróstica Júnior MR (2017) Jaboticaba berry peel intake prevents insulin-resistance-induced tau phosphorylation in mice. Mol Nutr Food Res 61:1600952CrossRefGoogle Scholar
  40. 40.
    Carey AN, Galli RL (2017) Mitigating the effects of high fat diet on the brain and behavior with berry supplementation. Food Funct 8:3869–3878PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rabeta M, Chan S, Neda G, Lam K, Ong M (2013) Anticancer effect of underutilized fruits. Int Food Res J 20:551–556Google Scholar
  42. 42.
    Aisha AFA, Abu-Salah KM, Alrokayan SA, Siddiqui MJ, Ismail Z, Majid AMSA (2012) Syzygium aromaticum extracts as good source of betulinic acid and potential anti-breast cancer. Rev Bras 22:335–343Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ângela Giovana Batista
    • 1
    Email author
  • Juliana Kelly da Silva-Maia
    • 3
  • Mário Roberto Maróstica Júnior
    • 2
  1. 1.Department of Food and NutritionUniversidade Federal de Santa Maria (UFSM)Palmeira das MissõesBrazil
  2. 2.Faculty of Food Engineering, Department of Food and NutritionUniversity of CampinasCampinasBrazil
  3. 3.Department of Nutrition, Center for Health SciencesUNiversidade Federal do Rio Grande do NorteNatalBrazil

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations