Advertisement

Bioactive Compounds of Camu-Camu (Myrciaria dubia (Kunth) McVaugh)

  • Juan C. CastroEmail author
  • J. Dylan Maddox
  • Marianela Cobos
  • Jae D. Paredes
  • Jorge L. Marapara
  • Janeth Braga
  • Sixto A. Imán
  • Hicler N. Rodríguez
  • Carlos G. Castro
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Camu-camu is a shrub, native to the Amazon that thrives in areas where flooding is frequent. Genetically, the plant is characterized by a diploid genome and moderate genetic diversity. Several parts of the plant are used in traditional folk medicine to treat a variety of acute and chronic diseases. For over 50 years, the exceptionally high vitamin C content of camu-camu has attracted worldwide attention that continues today because of the recent discovery of several health-promoting phytochemicals with corroborated biological activities (e.g., antioxidant, anti-obesity, antidiabetic). All of these beneficial attributes are well supported by in vitro and in vivo studies as well as human clinical trials. The metabolic precursors of these phytochemicals are synthesized in key metabolic pathways (i.e., the shikimate pathway, the mevalonate pathway). Of these metabolic pathways, we show details for the biosynthesis of betulinic acid, trans-resveratrol, and syringic acid. In conclusion, camu-camu is an exceptional plant for its ability to produce and accumulate significant amounts of a variety of health-promoting phytochemicals. Although several metabolic pathways responsible for the biosynthesis of these phytochemicals have been reconstructed based on fruit and seedling transcriptomes, detailed knowledge of the vast majority of metabolic pathways and their molecular regulatory mechanisms is lacking. Consequently, we must increase our knowledge of the metabolic processes using multi-omic approaches so that we can acquire the skills necessary to develop genetically improved varieties of camu-camu and implement biotechnological applications for the production of these bioactive phytochemicals.

Keywords

Bioactive compounds Biosynthetic pathways Nutraceuticals Phytochemicals Polyphenols 

Notes

Acknowledgments

We thank the Universidad Nacional de la Amazonía Peruana (UNAP) for providing funds to develop the research projects approved by R.R. N° 1657-2012-UNAP and R.R. N° 0686-2015-UNAP. We also thank the National Institute of Agricultural Innovation (INIA) – San Roque-Iquitos for providing access to the germplasm collection of camu-camu.

References

  1. 1.
    Lim TK (2012) Myrciaria dubia. In: Edible medicinal and non medicinal plants. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-2534-8_86Google Scholar
  2. 2.
    Villachica H (1996) El cultivo del camu camu (Myrciaria dubia H.B.K. Mc Vaugh) en la Amazonía Peruana. Tratado de Cooperación Amazónica (TCA), Secretaría Pro-Tempore, LimaGoogle Scholar
  3. 3.
    Alvarado E, Gutiérrez J, Benites E, Nomberto C (1999) Número cromosómico de Myrciaria dubia (H.B.K.) McVaugh “camu camu”. http://www.lamolina.edu.pe/cirgebb/doc/AGRUM_citogenetica.pdf. Accessed 5 June 2019
  4. 4.
    Uchiyama H, Koyama T (1993) Chromosomes of Myrciaria dubia, Myrtaceae. Chromosome Inf Serv 54:16–17Google Scholar
  5. 5.
    Grattapaglia D, Vaillancourt RE, Shepherd M et al (2012) Progress in Myrtaceae genetics and genomics: eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508.  https://doi.org/10.1007/s11295-012-0491-xCrossRefGoogle Scholar
  6. 6.
    da Costa IR, Dornelas MC, Forni-Martins ER (2008) Nuclear genome size variation in fleshy-fruited Neotropical Myrtaceae. Plant Syst Evol 276:209–217.  https://doi.org/10.1007/s00606-008-0088-xCrossRefGoogle Scholar
  7. 7.
    Bradfield RB, Roca A (1964) Camu-camu-a fruit high in ascorbic acid. J Am Diet Assoc 44:28–30PubMedGoogle Scholar
  8. 8.
    Yuyama L, Aguiar J, Yuyama K et al (2003) Teores de elementos minerais em algumas populações de camu-camu. Acta Amaz 33:549–554CrossRefGoogle Scholar
  9. 9.
    Castro JC, Gutiérrez F, Acuña C et al (2013) Variación del contenido de vitamina C y antocianinas en Myrciaria dubia “camu-camu”. Rev Soc Quím Perú 79:319–330Google Scholar
  10. 10.
    Imán SA, Pinedo S, Melchor M (2011) Caracterización morfológica y evaluación de la colección nacional de germoplasma de camu camu Myrciaria dubia (H.B.K) Mc Vaugh, del INIA Loreto-Perú. Sci Agropecu 2:189–201CrossRefGoogle Scholar
  11. 11.
    Rufino M d SM, Alves RE, de Brito ES et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002.  https://doi.org/10.1016/j.foodchem.2010.01.037CrossRefGoogle Scholar
  12. 12.
    Fracassetti D, Costa C, Moulay L, Tomás-Barberán FA (2013) Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem 139:578–588.  https://doi.org/10.1016/j.foodchem.2013.01.121CrossRefPubMedGoogle Scholar
  13. 13.
    Akachi T, Shiina Y, Kawaguchi T et al (2010) 1-methylmalate from camu-camu (Myrciaria dubia) suppressed d-galactosamine-induced liver injury in rats. Biosci Biotechnol Biochem 74:573–578CrossRefGoogle Scholar
  14. 14.
    Myoda T, Fujimura S, Park B et al (2010) Antioxidative and antimicrobial potential of residues of camu-camu juice production. J Food Agric Environ 8:304–307Google Scholar
  15. 15.
    Kaneshima T, Myoda T, Toeda K et al (2017) Antimicrobial constituents of peel and seeds of camu-camu (Myrciaria dubia). Biosci Biotechnol Biochem 81:1461–1465.  https://doi.org/10.1080/09168451.2017.1320517CrossRefPubMedGoogle Scholar
  16. 16.
    de Carvalho-Silva LB, Dionísio AP, Pereira AC d S et al (2014) Antiproliferative, antimutagenic and antioxidant activities of a Brazilian tropical fruit juice. LWT – Food Sci Technol 59:1319–1324.  https://doi.org/10.1016/j.lwt.2014.04.002CrossRefGoogle Scholar
  17. 17.
    Inoue T, Komoda H, Uchida T, Node K (2008) Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties. J Cardiol 52:127–132.  https://doi.org/10.1016/j.jjcc.2008.06.004CrossRefPubMedGoogle Scholar
  18. 18.
    Yazawa K, Suga K, Honma A et al (2011) Anti-inflammatory effects of seeds of the tropical fruit camu-camu (Myrciaria dubia). J Nutr Sci Vitaminol (Tokyo) 57:104–107CrossRefGoogle Scholar
  19. 19.
    Schwertz MC, Maia JRP, de Sousa RFS et al (2012) Hypolipidemic effect of camu-camu juice in rats. Rev Nutr 25:35–44.  https://doi.org/10.1590/S1415-52732012000100004CrossRefGoogle Scholar
  20. 20.
    Fidelis M, Santos JS, Escher GB et al (2018) In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: a multivariate structure-activity study. Food Chem Toxicol 120:479–490.  https://doi.org/10.1016/j.fct.2018.07.043CrossRefPubMedGoogle Scholar
  21. 21.
    Azevêdo JCS, Borges KC, Genovese MI et al (2015) Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res Int 73:135–141.  https://doi.org/10.1016/j.foodres.2015.02.015CrossRefGoogle Scholar
  22. 22.
    De Souza Schmidt Gonçalves AE, Lajolo FM, Genovese MI (2010) Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J Agric Food Chem 58:4666–4674.  https://doi.org/10.1021/jf903875uCrossRefPubMedGoogle Scholar
  23. 23.
    Kaneshima T, Myoda T, Nakata M et al (2016) Antioxidant activity of C-Glycosidic ellagitannins from the seeds and peel of camu-camu (Myrciaria dubia). LWT – Food Sci Technol 69:76–81.  https://doi.org/10.1016/j.lwt.2016.01.024CrossRefGoogle Scholar
  24. 24.
    de Araújo Padilha CE, de Azevedo JCS, de Sousa FC et al (2018) Recovery of polyphenols from camu-camu (Myrciaria dubia H.B.K. McVaugh) depulping residue by cloud point extraction. Chin J Chem Eng 26:2471–2476.  https://doi.org/10.1016/j.cjche.2017.10.032CrossRefGoogle Scholar
  25. 25.
    Fujita A, Sarkar D, Wu S et al (2015) Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc. Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Res Int 77(Part 2):194–203.  https://doi.org/10.1016/j.foodres.2015.07.009CrossRefGoogle Scholar
  26. 26.
    Donado-Pestana CM, Moura MHC, de Araujo RL et al (2018) Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Curr Opin Food Sci 19:42–49.  https://doi.org/10.1016/j.cofs.2018.01.001CrossRefGoogle Scholar
  27. 27.
    Ueda H, Kuroiwa E, Tachibana Y et al (2004) Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine 11:652–656.  https://doi.org/10.1016/j.phymed.2003.12.002CrossRefPubMedGoogle Scholar
  28. 28.
    Defilippi E (2011) La cadena de valor del camu camu en la región Loreto. Anáisis y lineamientos estratégicos para su desarrollo, Primera edición. Proyecto Perúbiodiverso-PBD, LimaGoogle Scholar
  29. 29.
    Bustamante F, Flores F, Metz F, Moreno A (2000) Estudio de Mercado para Myrciaria dubia H.B.K. Mc Vaugh (camu camu). Instituto Latino Alemán de la Tecnología del Aprendizaje – ILATAGoogle Scholar
  30. 30.
    Peralta J (2000) Programa Nacional de Camu camu 2000–2020, Unidad de Desarrollo de la Amazonía-UDA. https://www.minagri.gob.pe/portal/download/pdf/herramientas/cendoc/manuales-boletines/camu-camu/prog_nac_camucamu.pdf. Accessed 30 July 2019
  31. 31.
    Pinedo M (2009) Camu-camu: Innovación del agro en la amazonía peruana; perspectivas. http://www.bcrp.gob.pe/docs/Proyeccion-Institucional/Encuentros-Regionales/2009/Loreto/EER-Loreto-Mario-Pinedo.pdf. Accessed 27 June 2019
  32. 32.
    Peters CM, Vasquez A (1987) Estudios ecológicos de Camu-Camu (Myrciaria dubia). I. Producción de frutos en poblaciones naturales. Acta Amaz 17:161–188.  https://doi.org/10.1590/1809-43921987171174CrossRefGoogle Scholar
  33. 33.
    McVaugh R (1968) The genera of American Myrtaceae: an interim report. Taxon 17:354–418.  https://doi.org/10.2307/1217393CrossRefGoogle Scholar
  34. 34.
    Uchiyama H, Koyama T, Yoneda K (1996) Seed morphology and germination of camu camu Myrciaria dubia (Myrtaceae). Bull Coll Agric Vet Med-Nihon Univ 53:92–95Google Scholar
  35. 35.
    Medina A, Córdova E, Fasabi J et al (2013) Semillas y plántulas de Myrciaria dubia “camu-camu”: biometría, germinación, desarrollo y crecimiento inicial. Sci Agropecu 5:85–92Google Scholar
  36. 36.
    Jena S, Sahoo P, Das AB (2003) New reports of chromosome number and genome size in eight mangroves from coastal Orissa. Caryologia 56:353–358.  https://doi.org/10.1080/00087114.2003.10589344CrossRefGoogle Scholar
  37. 37.
    Rojas S, Yuyama K, Clement C, Ossamu E (2011) Diversidade genética em acessos do banco de germoplasma de camu-camu (Myrciaria dubia [H.B.K.] McVaugh) do INPA usando marcadores microssatélites (EST-SSR). Rev Corpoica 12:51–64CrossRefGoogle Scholar
  38. 38.
    Šmíd J, Kalousová M, Mandák B et al (2017) Morphological and genetic diversity of camu-camu [Myrciaria dubia (Kunth) McVaugh] in the Peruvian Amazon. PLoS One 12:e0179886.  https://doi.org/10.1371/journal.pone.0179886CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rojas S, Rodrigues D, Lima M, Fhilo S (2008) Desenvolvimento e mapeamento de microssatélites gênicos (EST-SSRs) de camu-camu (Myrciaria dubia [H.B.K.] McVaug). Rev Corpoica 9:14–21CrossRefGoogle Scholar
  40. 40.
    Rojas S (2007) Análise da variabilidade genética de acessos do banco de germoplasma de camu-camu (Myrciaria dubia H.B.K. McVaugh) do INPA, utilizando marcadores microssatélites EST (EST-SSRs). Tese de Doutorado, Universidade Federal do AmazonasGoogle Scholar
  41. 41.
    Koshikene D (2009) Análise da variabilidade genética de populações do banco de germoplasma de camu-camu (Myrciaria dubia (H.B.K.) McVaugh) utilizando marcadores microsatélites. Título de Doutor, Instituto Nacional de Pesquisas da Amazônia – INPAGoogle Scholar
  42. 42.
    Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, SunderlandGoogle Scholar
  43. 43.
    Castro JC, Maddox JD, Cobos M et al (2015) De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for l-ascorbic acid biosynthesis. BMC Genomics 16:997.  https://doi.org/10.1186/s12864-015-2225-6CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rengifo E (2009) Monografía: Camu camu camu- Myrciaria dubia (H.B.K) Mc Vaugh. http://repositorio.promperu.gob.pe/repositorio/123456789/1357. Accessed 15 Jan 2019
  45. 45.
    Ruiz L, Ruiz L, Maco M et al (2011) Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J Ethnopharmacol 133:917–921.  https://doi.org/10.1016/j.jep.2010.10.039CrossRefPubMedGoogle Scholar
  46. 46.
    Jernigan K (2012) Plants with histories: the changing ethnobotany of Iquito speakers of the Peruvian Amazon. Econ Bot 66:46–59.  https://doi.org/10.1007/s12231-011-9184-xCrossRefGoogle Scholar
  47. 47.
    Steele JCP (2000) The pharmacological evaluation of plants used traditionally for the treatment of malaria by indigenous people of South America. PhD. Thesis, University of LondonGoogle Scholar
  48. 48.
    Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96PubMedPubMedCentralGoogle Scholar
  49. 49.
    Gupta RK, Patel AK, Shah N et al (2014) Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 15:4405–4409.  https://doi.org/10.7314/apjcp.2014.15.11.4405CrossRefPubMedGoogle Scholar
  50. 50.
    Reynertson KA, Yang H, Jiang B et al (2008) Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem 109:883–890.  https://doi.org/10.1016/j.foodchem.2008.01.021CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75:199–212.  https://doi.org/10.1007/s11746-998-0032-9CrossRefGoogle Scholar
  52. 52.
    He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553.  https://doi.org/10.1159/000485089CrossRefPubMedGoogle Scholar
  53. 53.
    Balisteiro DM, de Araujo RL, Giacaglia LR, Genovese MI (2017) Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Res Int 100:196–203.  https://doi.org/10.1016/j.foodres.2017.08.044CrossRefPubMedGoogle Scholar
  54. 54.
    Nascimento OV, Boleti APA, Yuyama LKO, Lima ES (2013) Effects of diet supplementation with camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity. An Acad Bras Ciênc 85:355–363CrossRefGoogle Scholar
  55. 55.
    Gonçalves FA (2012) Efeito do néctar de camu-camu (Myrciaria dubia (Kunth) McVaugh) nos níveis séricos de colesterol, triglicerídeos e glicose em adultos. Mestre em Ciência, Universidade Federal do AmazonasGoogle Scholar
  56. 56.
    Languer Vargas B, Amaro Gonçalves F, Yuyama O et al (2015) Efecto de las cápsulas de camu-camu en la glucemia y perfil lipídico de los adultos sanos. Rev Cubana Plantas Med 20:48–61Google Scholar
  57. 57.
    Rufino MSM, Alves RE, Fernandes FAN, Brito ES (2011) Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res Int 44:2072–2075.  https://doi.org/10.1016/j.foodres.2010.07.002CrossRefGoogle Scholar
  58. 58.
    Sotero Solis V, Silva Doza L, García de Sotero D, Imán Correa S (2009) Evaluación de la actividad antioxidante de la pulpa, cáscara y semilla del fruto del camu camu (Myrciaria dubia H.B.K.). Rev Soc Quím Perú 75:293–299Google Scholar
  59. 59.
    Villanueva-Tiburcio JE, Condezo-Hoyos LA, Asquieri ER (2010) Antocianinas, ácido ascórbico, polifenoles totales y actividad antioxidante, en la cáscara de camu-camu (Myrciaria dubia (H.B.K) McVaugh). Food Sci Technol Camp 30:151–160.  https://doi.org/10.1590/S0101-20612010000500023CrossRefGoogle Scholar
  60. 60.
    de Azevêdo JCS, Fujita A, de Oliveira EL et al (2014) Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: a bioactive-rich Amazonian powder with functional attributes. Food Res Int 62:934–940.  https://doi.org/10.1016/j.foodres.2014.05.018CrossRefGoogle Scholar
  61. 61.
    Chirinos R, Galarza J, Betalleluz-Pallardel I et al (2010) Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages. Food Chem 120:1019–1024.  https://doi.org/10.1016/j.foodchem.2009.11.041CrossRefGoogle Scholar
  62. 62.
    Cunha-Santos ECE, Viganó J, Neves DA et al (2019) Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Res Int 115:160–166.  https://doi.org/10.1016/j.foodres.2018.08.031CrossRefPubMedGoogle Scholar
  63. 63.
    Liu C, Chen Y, Lu C et al (2019) Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation. Int Immunopharmacol 73:343–352.  https://doi.org/10.1016/j.intimp.2019.05.030CrossRefPubMedGoogle Scholar
  64. 64.
    Li N, Gong Z, Li X et al (2019) Betulinic acid inhibits the migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Int Immunopharmacol 67:186–193.  https://doi.org/10.1016/j.intimp.2018.11.042CrossRefPubMedGoogle Scholar
  65. 65.
    Jingbo W, Aimin C, Qi W et al (2015) Betulinic acid inhibits IL-1β-induced inflammation by activating PPAR-γ in human osteoarthritis chondrocytes. Int Immunopharmacol 29:687–692.  https://doi.org/10.1016/j.intimp.2015.09.009CrossRefPubMedGoogle Scholar
  66. 66.
    Wang S, Yang Z, Xiong F et al (2016) Betulinic acid ameliorates experimental diabetic-induced renal inflammation and fibrosis via inhibiting the activation of NF-κB signaling pathway. Mol Cell Endocrinol 434:135–143.  https://doi.org/10.1016/j.mce.2016.06.019CrossRefPubMedGoogle Scholar
  67. 67.
    de Souza Schmidt Gonçalves AE, Lellis-Santos C, Curi R et al (2014) Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Res Int 64:1–8.  https://doi.org/10.1016/j.foodres.2014.05.074CrossRefPubMedGoogle Scholar
  68. 68.
    Anhê FF, Nachbar RT, Varin TV et al (2019) Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68:453–464.  https://doi.org/10.1136/gutjnl-2017-315565CrossRefGoogle Scholar
  69. 69.
    Vargas BL (2012) Ação do camu-camu [Myrciaria dubia (Kunth) McVaugh] liofilizado sobre a glicemia e o perfil lipídico de adultos jovens. Mestre em Ciência, Universidade Federal do AmazonasGoogle Scholar
  70. 70.
    Mir SA, Shah MA, Ganai SA et al (2019) Understanding the role of active components from plant sources in obesity management. J Saudi Soc Agric Sci 18:168–176.  https://doi.org/10.1016/j.jssas.2017.04.003CrossRefGoogle Scholar
  71. 71.
    Yang CS, Zhang J, Zhang L et al (2016) Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 60:160–174.  https://doi.org/10.1002/mnfr.201500428CrossRefPubMedGoogle Scholar
  72. 72.
    Fujita A, Sarkar D, Genovese MI, Shetty K (2017) Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochem 59:133–140.  https://doi.org/10.1016/j.procbio.2017.05.017CrossRefGoogle Scholar
  73. 73.
    Lim J, Zhang X, Ferruzzi MG, Hamaker BR (2019) Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Food Chem 288:413–421.  https://doi.org/10.1016/j.foodchem.2019.02.117CrossRefPubMedGoogle Scholar
  74. 74.
    Liu M, Hu B, Zhang H et al (2017) Inhibition study of red rice polyphenols on pancreatic α-amylase activity by kinetic analysis and molecular docking. J Cereal Sci 76:186–192.  https://doi.org/10.1016/j.jcs.2017.04.011CrossRefGoogle Scholar
  75. 75.
    Martinez-Gonzalez AI, Díaz-Sánchez ÁG, de la Rosa LA et al (2019) Inhibition of α-amylase by flavonoids: structure activity relationship (SAR). Spectrochim Acta A Mol Biomol Spectrosc 206:437–447.  https://doi.org/10.1016/j.saa.2018.08.057CrossRefPubMedGoogle Scholar
  76. 76.
    Sun L, Gidley MJ, Warren FJ (2018) Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity. Food Chem 258:164–173.  https://doi.org/10.1016/j.foodchem.2018.03.017CrossRefPubMedGoogle Scholar
  77. 77.
    Johnston K, Sharp P, Clifford M, Morgan L (2005) Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett 579:1653–1657.  https://doi.org/10.1016/j.febslet.2004.12.099CrossRefPubMedGoogle Scholar
  78. 78.
    Kobayashi Y, Suzuki M, Satsu H et al (2000) Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618–5623.  https://doi.org/10.1021/jf0006832CrossRefPubMedGoogle Scholar
  79. 79.
    Manzano S, Williamson G (2010) Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Mol Nutr Food Res 54:1773–1780.  https://doi.org/10.1002/mnfr.201000019CrossRefPubMedGoogle Scholar
  80. 80.
    Williamson G (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 57:48–57.  https://doi.org/10.1002/mnfr.201200511CrossRefPubMedGoogle Scholar
  81. 81.
    Kwon O, Eck P, Chen S et al (2007) Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 21:366–377.  https://doi.org/10.1096/fj.06-6620comCrossRefPubMedGoogle Scholar
  82. 82.
    Wang Z, Clifford MN, Sharp P (2008) Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem 108:369–373.  https://doi.org/10.1016/j.foodchem.2007.10.083CrossRefGoogle Scholar
  83. 83.
    Gabbay KH (1973) The sorbitol pathway and the complications of diabetes. N Engl J Med 288:831–836.  https://doi.org/10.1056/NEJM197304192881609CrossRefPubMedGoogle Scholar
  84. 84.
    Ighodaro OM (2018) Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 108:656–662.  https://doi.org/10.1016/j.biopha.2018.09.058CrossRefPubMedGoogle Scholar
  85. 85.
    Habtemariam S (2019) Chapter 4 – Pathophysiology of type 2 diabetes complications. In: Habtemariam S (ed) Medicinal foods as potential therapies for type-2 diabetes and associated diseases, 1st edn. Academic, LondonGoogle Scholar
  86. 86.
    Oates PJ (2002) Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 50:325–392CrossRefGoogle Scholar
  87. 87.
    Tinto WF, Simmons-Boyce JL, McLean S, Reynolds WF (2005) Constituents of Agave americana and Agave barbadensis. Fitoterapia 76:594–597.  https://doi.org/10.1016/j.fitote.2005.04.013CrossRefPubMedGoogle Scholar
  88. 88.
    Han YN, Choo Y, Lee Y-C et al (2001) Monoamine oxidase B inhibitors from the fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 24:51–54.  https://doi.org/10.1007/BF02976493CrossRefPubMedGoogle Scholar
  89. 89.
    He X, Liu RH (2006) Cranberry phytochemicals: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 54:7069–7074.  https://doi.org/10.1021/jf061058lCrossRefPubMedGoogle Scholar
  90. 90.
    Mori T, Ruiz E, García M et al (2016) Efecto antimicrobiano de Myrciaria dubia (camu camu) y Cyperus luzulae (piri piri) sobre microorganismos patógenos. Conoc Amaz 4:49–57Google Scholar
  91. 91.
    Fujita A, Borges K, Correia R et al (2013) Impact of spouted bed drying on bioactive compounds, antimicrobial and antioxidant activities of commercial frozen pulp of camu-camu (Myrciaria dubia Mc. Vaugh). Food Res Int 54:495–500.  https://doi.org/10.1016/j.foodres.2013.07.025CrossRefGoogle Scholar
  92. 92.
    Steele JCP, Phelps RJ, Simmonds MSJ et al (2002) Two novel assays for the detection of haemin-binding properties of antimalarials evaluated with compounds isolated from medicinal plants. J Antimicrob Chemother 50:25–31.  https://doi.org/10.1093/jac/dkf089CrossRefPubMedGoogle Scholar
  93. 93.
    Gutierrez Yapu D, Sangama Mozombite D, Rengifo Salgado E, Gimenez Turba A (2008) Evaluación de la actividad antiplasmódica in vitro de extractos de Euterpe oleracea, Myrciaria dubia y Croton lechleri. BIOFARBO 16:16–20Google Scholar
  94. 94.
    Correia VC d S, Lima NO, de Oliveira FAS et al (2016) Evaluation of the antiplasmodial and leishmanicidal potential of Myrciaria dubia (Myrtaceae) extract. Rev Soc Bras Med Trop 49:586–592.  https://doi.org/10.1590/0037-8682-0227-2016CrossRefPubMedGoogle Scholar
  95. 95.
    Quijano CE, Pino JA (2007) Analysis of volatile compounds of camu-camu (Myrciaria dubia (HBK) Mcvaugh) fruit isolated by different methods. J Essent Oil Res 19:527–533.  https://doi.org/10.1080/10412905.2007.9699323CrossRefGoogle Scholar
  96. 96.
    Pino JA, Quijano CCE (2008) Volatile constituents of camu-camu (Myrciaria dubia (HBK) McVaugh) leaves. J Essent Oil Res 20:205–207.  https://doi.org/10.1080/10412905.2008.9699991CrossRefGoogle Scholar
  97. 97.
    Yogeeswari P, Sriram D (2005) Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem 12:657–666CrossRefGoogle Scholar
  98. 98.
    Amiri S, Dastghaib S, Ahmadi M et al (2019) Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2019.06.008
  99. 99.
    Lipko A, Swiezewska E (2016) Isoprenoid generating systems in plants – a handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process. Prog Lipid Res 63:70–92.  https://doi.org/10.1016/j.plipres.2016.04.002CrossRefPubMedGoogle Scholar
  100. 100.
    Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700.  https://doi.org/10.1146/annurev-arplant-050312-120116CrossRefPubMedGoogle Scholar
  101. 101.
    Fukushima EO, Seki H, Ohyama K et al (2011) CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol 52:2050–2061.  https://doi.org/10.1093/pcp/pcr146CrossRefPubMedGoogle Scholar
  102. 102.
    Huang L, Li J, Ye H et al (2012) Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta 236:1571–1581.  https://doi.org/10.1007/s00425-012-1712-0CrossRefPubMedGoogle Scholar
  103. 103.
    Tamura K, Seki H, Suzuki H et al (2017) CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis. Plant Cell Rep 36:437–445.  https://doi.org/10.1007/s00299-016-2092-xCrossRefPubMedGoogle Scholar
  104. 104.
    Singh AP, Singh R, Verma SS et al (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39:1851–1891.  https://doi.org/10.1002/med.21565CrossRefPubMedGoogle Scholar
  105. 105.
    Koushki M, Amiri-Dashatan N, Ahmadi N et al (2018) Resveratrol: a miraculous natural compound for diseases treatment. Food Sci Nutr 6:2473–2490.  https://doi.org/10.1002/fsn3.855CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105.  https://doi.org/10.1146/annurev-arplant-042811-105439CrossRefPubMedGoogle Scholar
  107. 107.
    Srinivasulu C, Ramgopal M, Ramanjaneyulu G et al (2018) Syringic acid (SA) – a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557.  https://doi.org/10.1016/j.biopha.2018.09.069CrossRefPubMedGoogle Scholar
  108. 108.
    Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97.  https://doi.org/10.1016/j.molp.2014.12.001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan C. Castro
    • 1
    • 2
    Email author
  • J. Dylan Maddox
    • 3
    • 4
  • Marianela Cobos
    • 5
  • Jae D. Paredes
    • 5
  • Jorge L. Marapara
    • 1
    • 2
  • Janeth Braga
    • 2
  • Sixto A. Imán
    • 6
  • Hicler N. Rodríguez
    • 1
  • Carlos G. Castro
    • 1
  1. 1.Specialized Unit of Biotechnology, Research Center of Natural Resources of the Amazon (CIRNA)National University of the Peruvian Amazon (UNAP)IquitosPeru
  2. 2.Academic Department of Biomedical Sciences and Biotechnology, Faculty of Biological SciencesNational University of the Peruvian Amazon (UNAP)IquitosPeru
  3. 3.Pritzker Laboratory for Molecular Systematics and EvolutionThe Field Museum of Natural HistoryChicagoUSA
  4. 4.Environmental SciencesAmerican Public University SystemCharles TownUSA
  5. 5.Laboratory of Biotechnology and BioenergeticsScientific University of Peru (UCP)IquitosPeru
  6. 6.Conservation Area of Plant Genetic ResourcesNational Institute of Agricultural Innovation (INIA)IquitosPeru

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Department of Horticulture, Division of Animal, Horticultural and Food SciencesChungbuk National UniversityChenogjuRepublic of Korea

Personalised recommendations