Advertisement

Bioactive Compounds of Avocado (Persea americana Mill.)

  • Mohammad YasirEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Avocado (Persea americana Mill.) contains a variety of essential nutrients and numerous phytochemicals that play significant roles in disease treatment as well as in management through certain mechanisms. Persea americana consist of long-chain polyunsaturated omega-3 fatty acids (ω-3 PUFAs), which have effects on many human disorders and diseases. Studies suggested that avocado may support cardiovascular health, weight management, and anti-aging. (−)-Epicatechin, a phenolic present in Persea americana fruits, has the ability to directly or indirectly scavenge reactive oxygen species (ROS) by chemically reacting or by modulating the pathways and also acts as an anticancer molecule. All parts of the Persea americana contain secondary metabolites, and their activities against several diseases and metabolic disorders have been discussed in this chapter.

Keywords

Antimycobacterial bioactive compounds Avocado Omega-3 fatty acids Persea americana Phenolics Secondary metabolites 

References

  1. 1.
    Galanakis CM (2017) Introduction. In: Galanakis CM (ed) Nutraceutical and functional food components effects of innovative processing techniques, 1st edn. Academic, London, pp 1–14Google Scholar
  2. 2.
    Correia RT, Borges KC, Medeiros MF, Genovese MI (2012) Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int 18(6):539–547PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Carbonell-Capella JM, Buniowska M, Barba FJ et al (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf 13(2):155–171CrossRefGoogle Scholar
  4. 4.
    Carbonell-Capella JM, Barba FJ, Esteve MJ, Frigola A (2013) Quality parameters, bioactive compounds and their correlation with antioxidant capacity of commercial fruit-based baby foods. Food Sci Technol Int 20(7):479–487PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mouhid L, Corzo-Martínez M, Torres C et al (2017) Improving in vivo efficacy of bioactive molecules: an overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J Oncol 2017:7351976PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Porrini M, Riso P (2008) Factors influencing the bioavailability of antioxidants in foods: a critical appraisal. Nutr Metab Cardiovasc Dis 18(10):647–650PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bergh BO, Lahav E (1996) Fruit breeding. Tree and tropical fruits, vol I. Wiley, West LafayetteGoogle Scholar
  8. 8.
    Krumreich FD, Borges CD, Mendonça CRB et al (2018) Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem 257:376–381PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yasir M, Das S, Kharya M (2010) The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn Rev 4(7):77–84PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dreher ML, Davenport AJ (2013) Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr 53(7):738–750PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yahia EM, Woolf AB (2011) Avocado (Persea americana Mill.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits, 1st edn. Woodhead Publishing Ltd., CambridgeGoogle Scholar
  12. 12.
    Pino JA, Rosado A, Aguero J (2000) Volatile components of avocado (Persea americana Mill.) fruits. J Essent Oil Res 12(3):377–378CrossRefGoogle Scholar
  13. 13.
    Scora RW, Scora PE (1998) Leaf oils of two new avocado varieties endemic to Costa Rica. J Essent Oil Res 10(6):705–707CrossRefGoogle Scholar
  14. 14.
    Werman MJ, Mokady S, Neeman I (1990) Partial isolation and characterization of a new natural inhibitor of lysyl oxidase from avocado seed oil. J Agric Food Chem 38(12):2164–2168CrossRefGoogle Scholar
  15. 15.
    De Almeida AP, Miranda MMFS, Simoni IC et al (1998) Flavonol monoglycosides isolated from the antiviral fractions of Persea americana (Lauraceae) leaf infusion. Phyther Res 12(8):562–567CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Carpena JG, Morcuende D, Andrade MJ et al (2011) Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem 59(10):5625–5635PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sciancalepore V, Dorbessan W (1982) Sterol composition of avocado oil (Persea americana Mill.). Grasas Aceites 33:273–275Google Scholar
  18. 18.
    Gross J, Gabai M, Lifshitz A, Sklarz B (1974) Structures of some carotenoids from the pulp of Persea americana. Phytochemistry 13(9):1917–1921CrossRefGoogle Scholar
  19. 19.
    Kashman Y, Néeman I, Lifshitz A (1970) New compounds from avocado pear-II. Tetrahedron 26(8):1943–1951CrossRefGoogle Scholar
  20. 20.
    Oberlies NH, Rogers LL, Martin JM, McLaughlin JL (1998) Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. J Nat Prod 61(6):781–785PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Adikaram NKB, Ewing DF, Karunaratne AM, Wijeratne EMK (1992) Antifungal compounds from immature avocado fruit peel. Phytochemistry 31(1):93–96CrossRefGoogle Scholar
  22. 22.
    Melgar B, Dias MI, Ciric A et al (2018) Bioactive characterization of Persea americana Mill. by-products: a rich source of inherent antioxidants. Ind Crop Prod 111:212–218CrossRefGoogle Scholar
  23. 23.
    Miranda MMFS, Almeida AP, Costa SS et al (1997) In vitro activity of extracts of Persea americana leaves on acyclovir-resistant and phosphonoacetic resistant herpes simplex virus. Phytomedicine 4(4):347–352PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Terasawa N, Sakakibara M, Murata M (2006) Antioxidative activity of avocado epicarp hot water extract. Food Sci Technol Res 12(1):55–58CrossRefGoogle Scholar
  25. 25.
    Adeboye JO, Fajonyomi MO, Makinde JM, Taiwo OB (1999) A preliminary study on the hypotensive activity of Persea americana leaf extracts in anaesthetized normotensive rats. Fitoterapia 70(1):15–20CrossRefGoogle Scholar
  26. 26.
    Hashimura H, Ueda C, Kawabata J, Kasai T (2001) Acetyl-CoA carboxylase inhibitors from avocado (Persea americana Mill) fruits. Biosci Biotechnol Biochem 65(7):1656–1658PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kawagishi H, Fukumoto Y, Hatakeyama M et al (2001) Liver injury suppressing compounds from avocado (Persea americana). J Agric Food Chem 49(5):2215–2221PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    USDA (U.S. Department of Agriculture) (2011) Avocado, almond, pistachio and walnut composition. Nutrient data laboratory. USDA National Nutrient Database for standard reference, release 24. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  29. 29.
    Haytowitz DB (2015) Updating USDA’s key foods list for what we eat in America, NHANES 2011–12. Proc Food Sci 4:71–78CrossRefGoogle Scholar
  30. 30.
    Carrillo C, Cavia MM, Alonso-Torre S (2012) Role of oleic acid in immune system; mechanism of action; a review. Nutr Hosp 27(4):978–990PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sales-Campos H, de Souza PR, Peghini BC et al (2012) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13(2):201–210Google Scholar
  32. 32.
    Abubakar M, Majinda R (2016) GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines 3(1):3PubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wu L, Gao H, Wang X et al (2010) Analysis of chemical composition of Chrysanthemum indicum flowers by GC/MS and HPLC. J Med Plants Res 4(5):421–426Google Scholar
  34. 34.
    Fuerst JF, Cox GF, Weaver SM, Duncan WC (1980) Comparison between undecylenic acid and tolnaftate in the treatment of tinea pedis. Cutis 25(5):544–546PubMedPubMedCentralGoogle Scholar
  35. 35.
    Alvizouri-Muñoz M, Carranza-Madrigal J, Herrera-Abarca J et al (1992) Effects of avocado as a source of monounsaturated fatty acids on plasma lipid levels. Arch Med Res 23(4):163–167PubMedPubMedCentralGoogle Scholar
  36. 36.
    Colquhoun DM, Moores D, Somerset SM, Humphries JA (1992) Comparison of the effects on lipoproteins and apolipoproteins of a diet high in monounsaturated fatty acids, enriched with avocado, and a high-carbohydrate diet. Am J Clin Nutr 56(4):671–677PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Carranza-Madrigal J, Herrera-Abarca JE, Alvizouri-Muñoz M et al (1997) Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients. Arch Med Res 28(4):537–541PubMedPubMedCentralGoogle Scholar
  38. 38.
    Itsiopoulos C, Marx W, Mayr HL, Tatucu-Babet OA, Dash SR, George ES, Trakman GL, Kelly JT, Thomas CJ, Brazionis L (2018) The role of omega-3 polyunsaturated fatty acid supplementation in the management of type 2 diabetes mellitus: a narrative review. J Nutr Intermed Metab 14:42–51CrossRefGoogle Scholar
  39. 39.
    López Ledesma R, Frati Munari AC, Hernández Domínguez BC et al (1996) Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch Med Res 27(4):519–523PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lerman-Garber I, Ichazo-Cerro S, Zamora-González J et al (1994) Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17(4):311–315PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mozaffarian D, Benjamin EJ, Go AS et al (2016) Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):447–454PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mozaffarian D, Wu JHY (2011) Omega-3 fatty acids and cardiovascular disease effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58(20):2047–2067PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shahidi F, Ambigaipalan P (2018) Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 9:345–381PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kato I, Akhmedkhanov A, Koenig K et al (1997) Prospective study of diet and female colorectal cancer: The New York University women’s health study. Nutr Cancer 28(3):276–281PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Takezaki T, Inoue M, Kataoka H et al (2003) Diet and lung cancer risk from a 14-year population-based prospective study in Japan: with special reference to fish consumption. Nutr Cancer 45(2):160–167PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Freitas RDS, Campos MM (2019) Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients 11(5):945PubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cao WQ, Ma ZF, Rasenick MM et al (2012) N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth. PLoS One 7(12):52838CrossRefGoogle Scholar
  48. 48.
    Yee LD, Young DC, Rosol TJ et al (2018) Dietary (n-3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARγ ligand rosiglitazone. J Nutr 135(5):983–988CrossRefGoogle Scholar
  49. 49.
    Gammone MA, Riccioni G, Parrinello G, D’orazio N (2018) Omega-3 polyunsaturated fatty acids: benefits and endpoints in sport. Nutrients 11(1):46PubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yehuda S, Rabinovitz S, Mostofsky DI (2005) Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26(1):98–102PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80(7):985–1012CrossRefGoogle Scholar
  53. 53.
    Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cos P, Ying L, Calomme M et al (1998) Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61(1):71–76PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Di Stefano V, Avellone G, Bongiorno D et al (2017) Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. Int J Food Prop 20(6):1302–1312CrossRefGoogle Scholar
  56. 56.
    Shay J, Elbaz HA, Lee I et al (2015) Molecular mechanisms and therapeutic effects of (−)-Epicatechin and other polyphenols in Cancer, inflammation, diabetes, and neurodegeneration. Oxidative Med Cell Longev 2015:1–13CrossRefGoogle Scholar
  57. 57.
    Kosińska A, Karamać M, Estrella I et al (2012) Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties. J Agric Food Chem 60(18):4613–4619PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kosińska A, Karamac M, Estrella I, Herna T et al (2012) Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties. J Agric Food Chem 60(18):4613–4619PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chai WM, Wei MK, Wang R et al (2015) Avocado proanthocyanidins as a source of tyrosinase inhibitors: structure characterization, inhibitory activity, and mechanism. J Agric Food Chem 63(33):7381–7387PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Khan A, Ali T, Rehman SU et al (2018) Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol 9:1–16CrossRefGoogle Scholar
  61. 61.
    Larijani K, Rustaiyan A, Abroomand Azar P et al (2010) Composition of essential oil of leaves of Persea americana cultivated in Iran. Chem Nat Compd 46(3):489–490CrossRefGoogle Scholar
  62. 62.
    Rodriguez-Saona C, Maynard DF, Phillips S, Trumble JT (2000) Avocadofurans and their tetrahydrofuran analogues: comparison of growth inhibitory and insecticidal activity. J Agric Food Chem 48(8):3642–3645PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Rosenblat G, Kagan HM, Shah MA et al (1995) Chemical characterization of lysyl oxidase inhibitor from avocado seed oil. J Am Oil Chem Soc 72(2):225–229CrossRefGoogle Scholar
  64. 64.
    Sagrero Nieves L, Bartley JP (1995) Volatile components of avocado leaves (Persea americana Mill) from the Mexican race. J Sci Food Agric 67(1):49–51CrossRefGoogle Scholar
  65. 65.
    Sinyinda S, Gramshaw JW (1998) Volatiles of avocado fruit. Food Chem 62(4):483–487CrossRefGoogle Scholar
  66. 66.
    Lee TH, Tsai YF, Huang TT et al (2012) Heptadecanols from the leaves of Persea americana var. americana. Food Chem 132(2):921–924CrossRefGoogle Scholar
  67. 67.
    Ying Chen L, Hsun Shuo C, Chien Fang P et al (2012) Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities. Food Chem 135(4):2904–2909CrossRefGoogle Scholar
  68. 68.
    Brai BIC, Odetola AA, Agomo PU (2007) Effects of Persea americana leaf extracts on body weight and liver lipids in rats fed hyperlipidaemic diet. Afr J Biotechnol 6(8):8Google Scholar
  69. 69.
    Musabayane C (2012) The effects of medicinal plants on renal function and blood pressure in diabetes mellitus: review article. Cardiovasc J Afr 23(8):462–468PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lee EA, Angka L, Rota S-G et al (2014) Inhibition of fatty acid oxidation with Avocatin B selectively targets AML cells and leukemia stem cells. Blood 124(21):268Google Scholar
  71. 71.
    Falodun A, Iyamabo H, Odion E, Engel-Lutz N (2013) Antiproliferative and pro-apoptotic activities of the stem bark of Persea americana (lauraceae) Mill in human breast adenocarcinoma cell line. J Appl Sci Environ Manag 17(3):433–438Google Scholar
  72. 72.
    Falodun A, Engel N, Kragl U et al (2013) Novel anticancer alkene lactone from Persea americana. Pharm Biol 51(6):700–706PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    D’Ambrosio SM, Han C, Pan L et al (2011) Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 409(3):465–469PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Abubakar ANF, Achmadi SS, Suparto IH (2017) Triterpenoid of avocado (Persea americana) seed and its cytotoxic activity toward breast MCF-7 and liver HepG2 cancer cells. Asian Pac J Trop Biomed 7(5):1–4CrossRefGoogle Scholar
  75. 75.
    Omeje KO, Ozioko JN, Opmeje HC (2018) Pharmacological Potentials, Characterization and Fatty Acids Profile of Persea americana Mill. (Avocardo) Seed Oil Using Gas Chromatography-Mass Spectroscopy. Biochemistry & Analytical Biochemistry 07 (04)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological Science and EngineeringMaulana Azad National Institute of TechnologyBhopalIndia

Section editors and affiliations

  • Hosakatte Niranjana Murthy
    • 1
    • 2
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia
  2. 2.Research Center for the Development of Advanced Horticultural TechnologyChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations