Simultaneous Recordings of MEG and Intracerebral EEG

  • Christian-G. BénarEmail author
  • Jean-Michel Badier
Reference work entry


Intracerebral EEG, performed in patients during presurgical evaluation of epilepsy, provides a unique opportunity for recording directly from brain structures in humans. From a neuroscientific point of view, this allows investigating brain networks at a mesoscopic scale, with high spatial precision and time-frequency sensitivity. From a methodological perspective, this provides a “ground truth” to which MEG results can be compared. As brain activity fluctuates across sessions and across time within a session, it is necessary to record the signals simultaneously in order to ensure that the same signals are captured in both depth (SEEG) and surface (MEG) measurements. In this chapter, we introduce the practical challenges that are encountered for recording MEG and intracerebral EEG together, as well as the new venues offered by this unique combination of invasive and noninvasive recordings in humans.


  1. Alarcon G, Guy CN, Binnie CD, Walker SR, Elwes RD, Polkey CE (1994) Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry 57:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andrzejak RG, David O, Gnatkovsky V, Wendling F, Bartolomei F, Francione S et al (2015) Localization of epileptogenic zone on pre-surgical intracranial EEG recordings: toward a validation of quantitative signal analysis approaches. Brain Topogr 28(6):832–837PubMedCrossRefPubMedCentralGoogle Scholar
  3. Attal Y, Bhattacharjee M, Yelnik J, Cottereau B, Lefèvre J, Okada Y, et al. (2007) Modeling and detecting deep brain activity with MEG & EEG. Conference proceedings: annual international conference of the IEEE Engineering in Medicine and Biology Society Conference 2007, pp 4937–4940Google Scholar
  4. Badier JM, Dubarry AS, Gavaret M, Chen S, Trebuchon AS, Marquis P et al (2017) Technical solutions for simultaneous MEG and SEEG recordings: towards routine clinical use. Physiol Meas 38:N118–NN27PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baillet S (2003) Challenging MEG source imaging with simultaneous depth recordings in epilepsy. International Congress of the International Society for Brain Electromagnetic Topography (ISBET2003). Santa FeGoogle Scholar
  6. Balderston NL, Schultz DH, Baillet S, Helmstetter FJ (2013) How to detect amygdala activity with magnetoencephalography using source imaging. J Vis Exp (76)Google Scholar
  7. Bancaud J, Angelergues R, Bernouilli C, Bonis A, Bordas-Ferrer M, Bresson M et al (1970) Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalogr Clin Neurophysiol 28:85–86PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bartolomei F, Trebuchon A, Bonini F, Lambert I, Gavaret M, Woodman M et al (2016) What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study. Clin Neurophysiol 127:1157–1162PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, Guye M et al (2017) Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia 58:1131–1147PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bénar C-G, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F et al (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. NeuroImage 30:1161–1170PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bénar C-G, Schön D, Grimault S, Nazarian B, Burle B, Roth M et al (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brovelli A, Chicharro D, Badier JM, Wang H, Jirsa V (2015) Characterization of cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. J Neurosci 35:12643–12658PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cohen D, Cuffin BN, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR et al (1990) MEG versus EEG localization test using implanted sources in the human brain. Ann Neurol 28:811–817PubMedCrossRefPubMedCentralGoogle Scholar
  14. Coito A, Plomp G, Genetti M, Abela E, Wiest R, Seeck M et al (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56(2):207–217CrossRefPubMedGoogle Scholar
  15. Dalal SS, Baillet S, Adam C, Ducorps A, Schwartz D, Jerbi K et al (2009) Simultaneous MEG and intracranial EEG recordings during attentive reading. NeuroImage 45:1289–1304PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dalal SS, Jerbi K, Bertrand O, Adam C, Ducorps A, Schwartz D et al (2013) Simultaneous MEG-intracranial EEG: new insights into the ability of MEG to capture oscillatory modulations in the neocortex and the hippocampus. Epilepsy Behav 2013Google Scholar
  17. Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pélégrini-Issac M et al (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36:69–87PubMedPubMedCentralCrossRefGoogle Scholar
  18. de Curtis M, Avanzini G (2001) Interictal spikes in focal epileptogenesis. Prog Neurobiol 63:541–567PubMedCrossRefPubMedCentralGoogle Scholar
  19. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dubarry AS, Badier JM, Trebuchon-Da Fonseca A, Gavaret M, Carron R, Bartolomei F et al (2014) Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis. NeuroImage 99:548–558PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gavaret M, Dubarry AS, Carron R, Bartolomei F, CG B, Trébuchon A (2016) Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sampling. Epilepsy Res 128(67):72Google Scholar
  22. Gotman J (1991) Relationships between interictal spiking and seizures: human and experimental evidence. Can J Neurol Sci 18:573–576PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jirsa VK, Proix T, Perdikis D, Woodman MM, Wang H, Gonzalez-Martinez J et al (2017) The virtual epileptic patient: individualized whole-brain models of epilepsy spread. NeuroImage 145(Pt B):377–388PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kahane P, Landré E, Minotti L, Francione S, Ryvlin P (2006) The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disord 8(Suppl 2):S16–S26PubMedPubMedCentralGoogle Scholar
  25. Kakisaka Y, Kubota Y, Wang ZI, Piao Z, Mosher JC, Gonzalez-Martinez J et al (2012) Use of simultaneous depth and MEG recording may provide complementary information regarding the epileptogenic region. Epileptic Disord 14:298–303PubMedPubMedCentralGoogle Scholar
  26. Koessler L, Cecchin T, Colnat-Coulbois S, Vignal JP, Jonas J, Vespignani H et al (2015) Catching the invisible: mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr 28:5–20PubMedCrossRefPubMedCentralGoogle Scholar
  27. Krieg J, Koessler L, Jonas J, Colnat-Coulbois S, Vignal JP, Benar CG et al (2017) Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: a CCEP study. NeuroImage 161:219–231PubMedCrossRefPubMedCentralGoogle Scholar
  28. Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L et al (2005) The many faces of the gamma band response to complex visual stimuli. NeuroImage 25:491–501PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lopes da Silva F, Van Rotterdam A (2005) Biophysical aspects of EEG and magnetoencephalogram generation. In: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  30. Malinowska U, Badier JM, Gavaret M, Bartolomei F, Chauvel P, Benar CG (2014) Interictal networks in magnetoencephalography. Hum Brain Mapp 35:2789–2805PubMedCrossRefPubMedCentralGoogle Scholar
  31. Matsumoto R, Nair DR, LaPresto E, Bingaman W, Shibasaki H, Luders HO (2007) Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130:181–197PubMedCrossRefPubMedCentralGoogle Scholar
  32. Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110:1013–1028PubMedCrossRefPubMedCentralGoogle Scholar
  33. Merlet I, Gotman J (2001) Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clin Neurophysiol 112:414–430PubMedCrossRefPubMedCentralGoogle Scholar
  34. Migliorelli C, Alonso JF, Romero S, Nowak R, Russi A, Mananas MA (2017) Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors. J Neural Eng 14:046013PubMedCrossRefPubMedCentralGoogle Scholar
  35. Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J et al (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. NeuroImage 5:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  36. Oishi M, Otsubo H, Kameyama S, Morota N, Masuda H, Kitayama M et al (2002) Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia 43:1390–1395PubMedCrossRefPubMedCentralGoogle Scholar
  37. Oswal A, Jha A, Neal S, Reid A, Bradbury D, Aston P et al (2016) Analysis of simultaneous MEG and intracranial LFP recordings during deep brain stimulation: a protocol and experimental validation. J Neurosci Methods 261:29–46PubMedPubMedCentralCrossRefGoogle Scholar
  38. Petkoski S, Palva JM, Jirsa VK (2018) Phase-lags in large scale brain synchronization: methodological considerations and in-silico analysis. PLoS Comput Biol 14:e1006160PubMedPubMedCentralCrossRefGoogle Scholar
  39. Pizzo F, Roehri N, Medina Villalon S, Trebuchon A, Chen S, Lagarde S et al (2019) Deep brain activities can be detected with magnetoencephalography. Nat Commun 10:971PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927PubMedPubMedCentralCrossRefGoogle Scholar
  41. Rampp S, Kaltenhauser M, Weigel D, Buchfelder M, Ingmar Blumcke I, Dorfler A et al (2010) MEG correlates of epileptic high gamma oscillations in invasive EEG. Epilepsia 51:1638–1642PubMedCrossRefPubMedCentralGoogle Scholar
  42. Roehri N, Pizzo F, Lagarde S, Lambert I, Nica A, McGonigal A et al (2018) High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol 83:84–97PubMedCrossRefPubMedCentralGoogle Scholar
  43. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700CrossRefPubMedGoogle Scholar
  44. Santiuste M, Nowak R, Russi A, Tarancon T, Oliver B, Ayats E et al (2008) Simultaneous magnetoencephalography and intracranial EEG registration: technical and clinical aspects. J Clin Neurophysiol 25:331–339PubMedCrossRefPubMedCentralGoogle Scholar
  45. Shigeto H, Morioka T, Hisada K, Nishio S, Ishibashi H, Kira D et al (2002) Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: simultaneous recording of magnetic fields and electrocorticography. Neurol Res 24:531–536PubMedCrossRefPubMedCentralGoogle Scholar
  46. Shirozu H, Hashizume A, Masuda H, Fukuda M, Ito Y, Nakayama Y et al (2016) Spatiotemporal accuracy of gradient magnetic-field topography (GMFT) confirmed by simultaneous magnetoencephalography and intracranial electroencephalography recordings in patients with intractable epilepsy. Front Neural Circ 10:65Google Scholar
  47. Sutherling WW, Akhtari M, Mamelak AN, Mosher J, Arthur D, Sands S et al (2001) Dipole localization of human induced focal afterdischarge seizure in simultaneous magnetoencephalography and electrocorticography. Brain Topogr 14:101–116PubMedCrossRefPubMedCentralGoogle Scholar
  48. Tallon-Baudry C, Bertrand O, Henaff MA, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662PubMedCrossRefPubMedCentralGoogle Scholar
  49. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS (2005) Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia 46:669–676PubMedCrossRefPubMedCentralGoogle Scholar
  50. Urrestarazu E, Chander R, Dubeau F, Gotman J (2007) Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 130:2354–2366PubMedCrossRefPubMedCentralGoogle Scholar
  51. van Klink N, Hillebrand A, Zijlmans M (2016) Identification of epileptic high frequency oscillations in the time domain by using MEG beamformer-based virtual sensors. Clin Neurophysiol 127:197–208PubMedCrossRefPubMedCentralGoogle Scholar
  52. van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S et al (2013) Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54:1409–1418PubMedCrossRefPubMedCentralGoogle Scholar
  53. Wennberg R, Valiante T, Cheyne D (2011) EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from. Clin Neurophysiol 122:1295–1313PubMedCrossRefPubMedCentralGoogle Scholar
  54. Wilke C, Worrell G, He B (2011) Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52:84–93CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INSERM, INS, Institute of System NeuroscienceAix Marseille UniversityMarseilleFrance

Section editors and affiliations

  • Selma Supek
    • 1
  • Cheryl J. Aine
    • 2
  1. 1.Faculty of Science, Department of PhysicsUniversity of ZagrebZagrebCroatia
  2. 2.RenoUSA

Personalised recommendations