Food Meets Brain

  • Maike A. HegeEmail author
  • Krunoslav T. Stingl
  • Hubert Preissl
Reference work entry


Food intake is essential for the survival of a living organism. The brain controls this complex behavior by integrating information of several systems to achieve a stable body weight of the individual. Over the last decades, however, the number of overweight people has been steadily increasing. These individuals are often characterized by increased food consumption and, thus, have been associated with alterations in their control of food intake. In this chapter, we will review knowledge about the systems involved in the control of eating behavior and introduce how MEG can be used to learn more about the cognitive aspects of this behavior.


Categorization Cognitive inhibition Eating behavior Event-related fields Executive function Food Homeostatic control Insulin Obesity Prefrontal cortex Resting state Reward Visual processing Working memory 


  1. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschop MH, Gao XB, Horvath TL (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116(12):3229–3239PubMedPubMedCentralCrossRefGoogle Scholar
  2. Antal A, Keri S, Kovacs G, Janka Z, Benedek G (2000) Early and late components of visual categorization: an event-related potential study. Brain Res Cogn Brain Res 9(1):117–119PubMedCrossRefPubMedCentralGoogle Scholar
  3. Apparsundaram S, Sung U, Price RD, Blakely RD (2001) Trafficking-dependent and -independent pathways of neurotransmitter transporter regulation differentially involving p38 mitogen-activated protein kinase revealed in studies of insulin modulation of norepinephrine transport in SK-N-SH cells. J Pharmacol Exp Therapy 299(2):666–677Google Scholar
  4. Appelhans BM (2009) Neurobehavioral inhibition of reward-driven feeding: implications for dieting and obesity. Obesity (Silver Spring) 17(4):640–647CrossRefGoogle Scholar
  5. Baskin DG, Figlewicz DP, Woods SC, Porte DJ, Dorsa DM (1987) Insulin in the brain. Annu Rev Physiol 49:335–347PubMedCrossRefPubMedCentralGoogle Scholar
  6. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334PubMedCrossRefPubMedCentralGoogle Scholar
  7. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22(20):9048–9052PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berridge KC (1991) Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite 16(2):103–120PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191(3):391–431CrossRefGoogle Scholar
  10. Berthoud HR (2004) Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 81(5):781–793PubMedCrossRefPubMedCentralGoogle Scholar
  11. Berthoud HR (2007) Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav 91(5):486–498PubMedCrossRefPubMedCentralGoogle Scholar
  12. Berthoud HR, Morrison C (2008) The brain, appetite, and obesity. Annu Rev Psychol 59:55–92PubMedCrossRefPubMedCentralGoogle Scholar
  13. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6):514–516PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boyd FT Jr, Clarke DW, Muther TF, Raizada MK (1985) Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem 260(29):15880–15884PubMedPubMedCentralGoogle Scholar
  15. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cabanac M (1971) Physiological role of pleasure. Science 173(2):1103–1107PubMedCrossRefPubMedCentralGoogle Scholar
  17. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348(17):1625–1638PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7PubMedPubMedCentralCrossRefGoogle Scholar
  19. Choi J, Ko J, Racz B, Burette A, Lee JR, Kim S, Na M, Lee HW, Kim K, Weinberg RJ, Kim E (2005) Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci 25(4):869–879PubMedPubMedCentralCrossRefGoogle Scholar
  20. Clark VP, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV (1996) Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. NeuroImage 4(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cornier MA, Von Kaenel SS, Bessesen DH, Tregellas JR (2007) Effects of overfeeding on the neuronal response to visual food cues. Am J Clin Nutr 86(4):965–971PubMedCrossRefPubMedCentralGoogle Scholar
  22. Craft S, Asthana S, Schellenberg G, Baker L, Cherrier M, Boyt AA, Martins RN, Raskind M, Peskind E, Plymate S (2000) Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci 903:222–228PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cummings JL (1995) Anatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci 769:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50(8):1714–1719PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dagher A (2012) Functional brain imaging of appetite. Trends Endocrinol Metab 23(5):250–260PubMedCrossRefPubMedCentralGoogle Scholar
  26. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, Tataranni PA (2004) Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord 28(3):370–377PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dietrich MO, Horvath TL (2009) Feeding signals and brain circuitry. Eur J Neurosci 30(9):1688–1696PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fabre-Thorpe M, Delorme A, Marlot C, Thorpe S (2001) A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J Cogn Neurosci 13(2):171–180PubMedCrossRefPubMedCentralGoogle Scholar
  29. Figlewicz DP, Bentson K, Ocrant I (1993) The effect of insulin on norepinephrine uptake by PC12 cells. Brain Res Bull 32(4):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fuhrer D, Zysset S, Stumvoll M (2008) Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study. Obesity (Silver Spring) 16(5):945–950CrossRefGoogle Scholar
  31. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51(6):811–822PubMedCrossRefGoogle Scholar
  32. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, Ravussin E, Reiman EM, Tataranni PA (2000) Differential brain responses to satiation in obese and lean men. Diabetes 49(5):838–846PubMedCrossRefGoogle Scholar
  33. Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE, Ravussin E, Reiman EM, Tataranni PA (2001) Effect of satiation on brain activity in obese and lean women. Obes Res 9(11):676–684PubMedCrossRefGoogle Scholar
  34. Guthoff M, Grichisch Y, Canova C, Tschritter O, Veit R, Hallschmid M, Haring HU, Preissl H, Hennige AM, Fritsche A (2010) Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab 95(2):748–755PubMedCrossRefGoogle Scholar
  35. Guthoff M, Stingl KT, Tschritter O, Rogic M, Heni M, Stingl K, Hallschmid M, Haring HU, Fritsche A, Preissl H, Hennige AM (2011) The insulin-mediated modulation of visually evoked magnetic fields is reduced in obese subjects. PLoS One 6(5):e19482PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hasher L, Quig MB, May CP (1997) Inhibitory control over no-longer-relevant information: adult age differences. Mem Cogn 25(3):286–295CrossRefGoogle Scholar
  37. Haslam DW, James WP (2005) Obesity. Lancet 366(9492):1197–1209CrossRefGoogle Scholar
  38. Hege MA, Stingl KT, Ketterer C, Haring HU, Heni M, Fritsche A, Preissl H (2013) Working memory-related brain activity is associated with outcome of lifestyle intervention. Obesity (Silver Spring) 21(12):2488–2494CrossRefGoogle Scholar
  39. Heidenreich KA, Toledo SP (1989) Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6. Endocrinology 125(3):1458–1463PubMedCrossRefGoogle Scholar
  40. Herman CP, Roth DA, Polivy J (2003) Effects of the presence of others on food intake: a normative interpretation. Psychol Bull 129(6):873–886PubMedCrossRefGoogle Scholar
  41. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810PubMedCrossRefGoogle Scholar
  42. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham heart study. Circulation 67(5):968–977PubMedCrossRefGoogle Scholar
  43. Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11(1):1–18PubMedCrossRefGoogle Scholar
  44. Kampe J, Tschop MH, Hollis JH, Oldfield BJ (2009) An anatomic basis for the communication of hypothalamic, cortical and mesolimbic circuitry in the regulation of energy balance. Eur J Neurosci 30(3):415–430PubMedCrossRefGoogle Scholar
  45. Karhunen LJ, Lappalainen RI, Vanninen EJ, Kuikka JT, Uusitupa MI (1997) Regional cerebral blood flow during food exposure in obese and normal-weight women. Brain 120.(Pt 9:1675–1684PubMedCrossRefGoogle Scholar
  46. Kawakami O, Kaneoke Y, Kakigi R (2000) Perception of apparent motion is related to the neural activity in the human extrastriate cortex as measured by magnetoencephalography. Neurosci Lett 285(2):135–138PubMedCrossRefGoogle Scholar
  47. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22(9):3306–3311PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lechin F, van der Dijs B (2006) Central nervous system circuitry involved in the hyperinsulinism syndrome. Neuroendocrinology 84(4):222–234PubMedCrossRefGoogle Scholar
  49. Ma XH, Zhong P, Gu Z, Feng J, Yan Z (2003) Muscarinic potentiation of GABA(a) receptor currents is gated by insulin signaling in the prefrontal cortex. J Neurosci 23(4):1159–1168PubMedPubMedCentralCrossRefGoogle Scholar
  50. Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, Wang YT (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25(3):649–662CrossRefGoogle Scholar
  51. Masters BA, Shemer J, Judkins JH, Clarke DW, Le Roith D, Raizada MK (1987) Insulin receptors and insulin action in dissociated brain cells. Brain Res 417(2):247–256PubMedCrossRefGoogle Scholar
  52. Mayer J, Thomas DW (1967) Regulation of food intake and obesity. Science 156(773):328–337PubMedCrossRefGoogle Scholar
  53. Meister B (2007) Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 92(1–2):263–271PubMedCrossRefGoogle Scholar
  54. Mielke JG, Taghibiglou C, Liu L, Zhang Y, Jia Z, Adeli K, Wang YT (2005) A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 93(6):1568–1578PubMedCrossRefGoogle Scholar
  55. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  56. Mogg K, Bradley BP, Hyare H, Lee S (1998) Selective attention to food-related stimuli in hunger: are attentional biases specific to emotional and psychopathological states, or are they also found in normal drive states? Behav Res Therapy 36(2):227–237CrossRefGoogle Scholar
  57. Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291(10):1238–1245PubMedCrossRefGoogle Scholar
  58. Morris JS, Dolan RJ (2001) Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli. J Neurosci 21(14):5304–5310PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nederkoorn C, Braet C, Van Eijs Y, Tanghe A, Jansen A (2006a) Why obese children cannot resist food: the role of impulsivity. Eat Behav 7(4):315–322PubMedCrossRefGoogle Scholar
  60. Nederkoorn C, Smulders FT, Havermans RC, Roefs A, Jansen A (2006b) Impulsivity in obese women. Appetite 47(2):253–256PubMedCrossRefPubMedCentralGoogle Scholar
  61. Nummenmaa L, Hietanen JK, Calvo MG, Hyona J (2011) Food catches the eye but not for everyone: a BMI-contingent attentional bias in rapid detection of nutriments. PLoS One 6(5):e19215PubMedPubMedCentralCrossRefGoogle Scholar
  62. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566–572PubMedCrossRefPubMedCentralGoogle Scholar
  63. Olde Dubbelink KT, Felius A, Verbunt JP, van Dijk BW, Berendse HW, Stam CJ, Delemarre-van de Waal HA (2008) Increased resting-state functional connectivity in obese adolescents; a magnetoencephalographic pilot study. PLoS One 3(7):e2827PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pannacciulli N, Del Parigi A, Chen K, Le DS, Reiman EM, Tataranni PA (2006) Brain abnormalities in human obesity: a voxel-based morphometric study. NeuroImage 31(4):1419–1425PubMedCrossRefPubMedCentralGoogle Scholar
  65. Park CR, Seeley RJ, Craft S, Woods SC (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 68(4):509–514PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pecina S, Berridge KC (2005) Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 25(50):11777–11786PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23(28):9395–9402PubMedPubMedCentralCrossRefGoogle Scholar
  68. Piech RM, Pastorino MT, Zald DH (2010) All I saw was the cake. Hunger effects on attentional capture by visual food cues. Appetite 54(3):579–582PubMedCrossRefGoogle Scholar
  69. Plitzko D, Rumpel S, Gottmann K (2001) Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons. Eur J Neurosci 14(8):1412–1415PubMedCrossRefGoogle Scholar
  70. Polivy J, Herman CP (2006) An evolutionary perspective on dieting. Appetite 47(1):30–35PubMedCrossRefPubMedCentralGoogle Scholar
  71. Porubska K, Veit R, Preissl H, Fritsche A, Birbaumer N (2006) Subjective feeling of appetite modulates brain activity: an fMRI study. NeuroImage 32(3):1273–1280PubMedCrossRefPubMedCentralGoogle Scholar
  72. Rexrode KM, Hennekens CH, Willett WC, Colditz GA, Stampfer MJ, Rich-Edwards JW, Speizer FE, Manson JE (1997) A prospective study of body mass index, weight change, and risk of stroke in women. JAMA 277(19):1539–1545PubMedCrossRefPubMedCentralGoogle Scholar
  73. Robinson LJ, Leitner W, Draznin B, Heidenreich KA (1994) Evidence that p21ras mediates the neurotrophic effects of insulin and insulin-like growth factor I in chick forebrain neurons. Endocrinology 135(6):2568–2573PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rolls ET (2005) Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav 85(1):45–56PubMedCrossRefPubMedCentralGoogle Scholar
  75. Saper CB, Chou TC, Elmquist JK (2002) The need to feed: homeostatic and hedonic control of eating. Neuron 36(2):199–211PubMedCrossRefPubMedCentralGoogle Scholar
  76. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296PubMedPubMedCentralCrossRefGoogle Scholar
  77. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24(8):855–872PubMedCrossRefPubMedCentralGoogle Scholar
  78. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671CrossRefGoogle Scholar
  79. Seeley RJ, Woods SC (2003) Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 4(11):901–909PubMedCrossRefPubMedCentralGoogle Scholar
  80. Shin AC, Zheng H, Berthoud HR (2009) An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav 97(5):572–580PubMedPubMedCentralCrossRefGoogle Scholar
  81. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte ML, Jansen A (2009) Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res 198(1):149–158PubMedCrossRefPubMedCentralGoogle Scholar
  82. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124.(Pt 9:1720–1733PubMedCrossRefPubMedCentralGoogle Scholar
  83. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(Pt 1):213–224PubMedCrossRefPubMedCentralGoogle Scholar
  84. Stingl KT, Kullmann S, Guthoff M, Heni M, Fritsche A, Preissl H (2010a) Insulin modulation of magnetoencephalographic resting state dynamics in lean and obese subjects. Front Syst Neurosci 4:157PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stingl KT, Rogic M, Stingl K, Canova C, Tschritter O, Braun C, Fritsche A, Preissl H (2010b) The temporal sequence of magnetic brain activity for food categorization and memorization—an exploratory study. NeuroImage 52(4):1584–1591PubMedCrossRefPubMedCentralGoogle Scholar
  86. Stingl KT, Kullmann S, Ketterer C, Heni M, Haring HU, Fritsche A, Preissl H (2012) Neuronal correlates of reduced memory performance in overweight subjects. NeuroImage 60(1):362–369PubMedCrossRefPubMedCentralGoogle Scholar
  87. Stockburger J, Weike AI, Hamm AO, Schupp HT (2008) Deprivation selectively modulates brain potentials to food pictures. Behav Neurosci 122(4):936–942PubMedCrossRefPubMedCentralGoogle Scholar
  88. Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE (2008) Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage 41(2):636–647PubMedCrossRefPubMedCentralGoogle Scholar
  89. Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR (2010) The role of gut hormones and the hypothalamus in appetite regulation. Endocr J 57(5):359–372PubMedCrossRefPubMedCentralGoogle Scholar
  90. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci U S A 96(8):4569–4574PubMedPubMedCentralCrossRefGoogle Scholar
  91. Thierry G, Martin CD, Downing P, Pegna AJ (2007) Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nat Neurosci 10(4):505–511PubMedCrossRefPubMedCentralGoogle Scholar
  92. Thorpe SJ, Fabre-Thorpe M (2001) Seeking categories in the brain. Science. Neuroscience 291(5502):260–263Google Scholar
  93. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381(6582):520–522CrossRefPubMedGoogle Scholar
  94. Toepel U, Knebel JF, Hudry J, le Coutre J, Murray MM (2009) The brain tracks the energetic value in food images. NeuroImage 44(3):967–974PubMedCrossRefPubMedCentralGoogle Scholar
  95. Tschritter O, Preissl H, Hennige AM, Stumvoll M, Porubska K, Frost R, Marx H, Klosel B, Lutzenberger W, Birbaumer N, Haring HU, Fritsche A (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci U S A 103(32):12103–12108PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tschritter O, Preissl H, Hennige AM, Sartorius T, Stingl KT, Heni M, Ketterer C, Stefan N, Machann J, Schleicher E, Fritsche A, Haring HU (2012) High cerebral insulin sensitivity is associated with loss of body fat during lifestyle intervention. Diabetologia 55(1):175–182PubMedCrossRefPubMedCentralGoogle Scholar
  97. Uhlhaas PJ, Haenschel C, Nikolic D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34(5):927–943PubMedPubMedCentralCrossRefGoogle Scholar
  98. Unger JW, Livingston JN, Moss AM (1991) Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol 36(5):343–362PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ungerleider LG, Haxby JV (1994) What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4(2):157–165PubMedCrossRefPubMedCentralGoogle Scholar
  100. van der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GM (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94(4):1158–1166PubMedCrossRefPubMedCentralGoogle Scholar
  101. van Duinkerken E, Klein M, Schoonenboom NS, Hoogma RP, Moll AC, Snoek FJ, Stam CJ, Diamant M (2009) Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes 58(10):2335–2343PubMedPubMedCentralCrossRefGoogle Scholar
  102. VanRullen R, Thorpe SJ (2001) The time course of visual processing: from early perception to decision-making. J Cogn Neurosci 13(4):454–461PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vega GL (2004) Obesity and the metabolic syndrome. Minerva Endocrinol 29(2):47–54PubMedPubMedCentralGoogle Scholar
  104. Vetiska SM, Ahmadian G, Ju W, Liu L, Wymann MP, Wang YT (2007) GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology 52(1):146–155PubMedCrossRefPubMedCentralGoogle Scholar
  105. Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, Logan J, Wong C, Thanos PK, Ma Y, Pradhan K (2009) Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 17(1):60–65CrossRefGoogle Scholar
  106. Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(a) receptors to postsynaptic domains by insulin. Nature 388(6643):686–690PubMedCrossRefPubMedCentralGoogle Scholar
  107. WHO (2012) Obesity and overweight. Accessed 20 Feb 2013
  108. Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74(4–5):683–701PubMedCrossRefPubMedCentralGoogle Scholar
  109. Woods SC, Seeley RJ (2000) Adiposity signals and the control of energy homeostasis. Nutrition 16(10):894–902PubMedCrossRefPubMedCentralGoogle Scholar
  110. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282(5738):503–505PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wynne K, Stanley S, McGowan B, Bloom S (2005) Appetite control. J Endocrinol 184(2):291–318PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yeomans MR, Wright P, Macleod HA, Critchley JA (1990) Effects of nalmefene on feeding in humans. Dissociation of hunger and palatability. Psychopharmacology 100(3):426–432PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maike A. Hege
    • 1
    Email author
  • Krunoslav T. Stingl
    • 2
  • Hubert Preissl
    • 3
  1. 1.Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenUniversity of TübingenTübingenGermany
  2. 2.Centre for OphthalmologyUniversity of TübingenTübingenGermany
  3. 3.Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), fMEG CenterUniversity of TübingenTübingenGermany

Section editors and affiliations

  • Nobukazu Nakasato
    • 1
  1. 1.Department of EpileptologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations