MEG Imaged Pathways of Stuttering

  • Susan M. BowyerEmail author
  • Jennifer Peacock
Reference work entry


Knowledge of the underlying mechanism of stuttering may be useful for finding the best individual treatment for this persistent disorder. Stuttering is a disruption in speech production, characterized by repetitions, blocks, and/or prolongations. MEG neuroimaging techniques provide an excellent tool for establishing and evaluating reliable protocols to detect the underlying mechanisms of stuttering which in the future will help clinicians assess responses to treatments. Detection of neuronal network abnormalities in the default mode network of patients who stutter can also provide further brain regions for evaluation of pre- and posttreatment. This chapter reviews the use of MEG in past and present studies of stuttering. Areas for future research and refinement of MEG protocols for stuttering are also presented.


Stuttering Magnetoencephalography (MEG) Resting state Evoked responses Broca’s area Wernicke’s area Fiber tracks Neuronal networks Adults who stutter (AWS) Children who stutter (CWS) People who stutter (PWS) Language processing Treatment Inferior frontal gyrus Premotor Auditory Visual 


  1. Ambrose NG, Yairi E (1999) Normative disfluency data for early childhood stuttering. J Speech Lang Hear Res 42:895–909PubMedCrossRefGoogle Scholar
  2. Anderson JD, Pellowski MW, Conture EG, Kelly EM (2003) Temperamental characteristics of young children who stutter. J Speech Lang Hear Res 46(5):1221–1233PubMedPubMedCentralCrossRefGoogle Scholar
  3. Beal DS, Quraan MA, Cheyne DO, Taylor MJ, Gracco VL, De Nil LF (2011) Speech-induced suppression of evoked auditory fields in children who stutter. NeuroImage 54(4):2994–3003PubMedCrossRefGoogle Scholar
  4. Bennett EM (2006) Working with people who stutter: a lifespan approach. Pearson Education Inc, Upper Saddle RiverGoogle Scholar
  5. Biermann-Ruben K, Salmelin R, Schnitzler A (2005) Right rolandic activation during speech perception in stutterers: a MEG study. NeuroImage 25(3):793–801PubMedCrossRefGoogle Scholar
  6. Blomgren M (2010) Stuttering treatment for adults: an update on contemporary approaches. Semin Speech Lang 31(4):272–282PubMedCrossRefGoogle Scholar
  7. Bloodstein O (1995) A handbook on stuttering. Singular Publishing Group, San DiegoGoogle Scholar
  8. Bothe AK, Davidow JH, Bramlett RE, Franic DM, Ingham RJ (2006a) Stuttering treatment research 1970–2005: II. Systematic review incorporating trial quality assessment of pharmacological approaches. Am J Speech Lang Pathol 15(4):342–352PubMedCrossRefGoogle Scholar
  9. Bothe AK, Davidow JH, Bramlett RE, Franic DM, Ingham RJ (2006b) Stuttering treatment research 1970–2005: I. Systematic review incorporating trial quality assessment of behavioral, cognitive, and related approaches. Am J Speech Lang Pathol 15(4):321–341PubMedCrossRefGoogle Scholar
  10. Bowyer SM, Moran JE, Mason KM, Constantinou JE, Smith BJ, Barkley GL, Tepley N (2004) MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology 62(12):2247–2255PubMedCrossRefGoogle Scholar
  11. Bowyer SM, Peacock J, Tepley N, Moran JE (2010) Neuronal effects of the SpeechEasy treatment for stuttering. In: 17th international conference on biomagnetism advances in biomagnetism—BIOMAG2010, vol 28. IFMBE, Dubrovnik, pp 342–345CrossRefGoogle Scholar
  12. Braun A, Varga M, Stager S, Schulz G, Selbie S, Maisog JM, Carson RE, Ludlow CL (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. Brain 120:761–784PubMedCrossRefGoogle Scholar
  13. Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:105–117PubMedCrossRefGoogle Scholar
  14. Chang S, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL (2008) Brain anatomy difference in childhood stuttering. NeuroImage 39(3):1333–1344PubMedCrossRefGoogle Scholar
  15. Chang SE, Kenney MK, Loucks TMJ, Ludlow CL (2009) Brain activation abnormalities during speech and non-speech in stuttering speakers. NeuroImage 46(1):201–212PubMedPubMedCentralCrossRefGoogle Scholar
  16. Conture EG (1990) Childhood stuttering: what is it and who does it? ASHA Rep 18:2–14Google Scholar
  17. Conture EG, Kelly EM (1991) Young stutterers’ nonspeech behaviors during stuttering. J Speech Lang Hear Res 34:1041–1056CrossRefGoogle Scholar
  18. De Nil LF, Kroll RM (2001) Searching for the neural basis of stuttering treatment outcome: recent neuroimaging studies. Clin Linguis Phon 15:163–168CrossRefGoogle Scholar
  19. De Nil LF, Kroll RM, Kapur S, Houle S (2000) A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. J Speech Lang Hear Res 43:1038–1053PubMedCrossRefGoogle Scholar
  20. De Nil LF, Sasisekaran J, Van Lieshout PH, Sandor P (2005) Speech disfluencies in individuals with Tourette syndrome. J Psychosom Res 58(1):97–102PubMedCrossRefGoogle Scholar
  21. De Nil LF, Beal DS, Lafaille SJ, Kroll RM, Crawley AP, Gracco VL (2008) The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults. Brain Lang 107(2):114–123PubMedCrossRefGoogle Scholar
  22. Dell G (1986) A spreading activation theory of retrieval in sentence production. Psychol Rev 93:283–321PubMedCrossRefGoogle Scholar
  23. Drayna D, Kang C (2011) Genetic approaches to understanding the causes of stuttering. J Neurodev Disord 3(4):374–380PubMedPubMedCentralCrossRefGoogle Scholar
  24. Elisevich K, Shukla N, Moran JE, Smith BJ, Schultz L, Mason KM, Barkley GL, Tepley N, Gumenyuk V, Bowyer SM (2011) An assessment of MEG coherence imaging in the study of temporal lobe epilepsy. Epilepsia 52(6):1110–1119. PMID:21366556PubMedPubMedCentralCrossRefGoogle Scholar
  25. Foundas AL, Bollich AM, Feldman J, Corey DM, Hurley M, Lemen LC, Heilman KM (2004) Aberrant auditory processing and atypical planum temporale in developmental stuttering. Neurology 63(9):1640–1646. PMID:15534249PubMedCrossRefGoogle Scholar
  26. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefGoogle Scholar
  27. Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Matrin C et al.(1996) A PET study of the neural systems of stuttering. Nature 382:158–161PubMedCrossRefGoogle Scholar
  28. Fox PT, Ingham RJ, Ingham JC, Zamarripa F, Xiong J-H, Lancaster JL (2000) Brain correlates of stuttering and syllable production: a PET performance-correlation analysis. Brain 123:1985–2004PubMedCrossRefGoogle Scholar
  29. Frazier L (1987) Theories of sentence processing. MIT Press, CambridgeGoogle Scholar
  30. Friederici A (1999) The neurobiology of language comprehension. Springer, BerlinCrossRefGoogle Scholar
  31. Friederici A (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fromkin V (1971) The non-anomalous nature of anomalous utterances. Language 47:27–52CrossRefGoogle Scholar
  33. Garret M (1975) The analysis of sentence production. Academic, NewYorkCrossRefGoogle Scholar
  34. Garrett M (1980) Levels of processing in sentence production. Academic, LondonGoogle Scholar
  35. Geschwind N (1970) The organization of language and the brain. Science 170(961):940–944PubMedCrossRefGoogle Scholar
  36. Gordon N (2002) Stuttering: incidence and causes. Dev Med Child Neurol 44(4):278–281PubMedCrossRefPubMedCentralGoogle Scholar
  37. Greenwald M, Bowyer S (2003) MEG studies of speech production. Perspect Neurophysiol Neurogenic Speech Lang Disord 13(3):4–9CrossRefGoogle Scholar
  38. Guitar B (1998) Stuttering: an integrated approach to its nature and treatment. Williams & Wilkins, BaltimoreGoogle Scholar
  39. Hagoort P (2003) How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. NeuroImage 20:S18–S29PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hari R, Levanen S et al.(2000) Timing of human cortical functions during cognition: role of MEG. Trends Cogn Sci 4(12):455–462CrossRefPubMedGoogle Scholar
  41. Heim S (2005) The structure and dynamics of normal language processing: insights from neuroimaging. Acta Neurobiol Exp 65:95–116Google Scholar
  42. Helenius P, Salmelin R, Service E, Connolly JF (1998) Distinct time courses of word and context comprehension in the left temporal cortex. Brain 121.(Pt 6:1133–1142PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hickok G (2009) The functional neuroanatomy of language. Phys Life Rev 6(3):121–143PubMedPubMedCentralCrossRefGoogle Scholar
  44. Howell P (2004) Effects of delayed auditory feedback and frequency-shifted feedback on speech control and some potentials for future development of prosthetic aids for stammering. Stammering Res 1(1):31–46PubMedPubMedCentralGoogle Scholar
  45. Howell P (2011) Listen to the lessons of The King’s Speech. Nature 470(7332):7PubMedCrossRefGoogle Scholar
  46. Ingham RJ (2001) Brain imaging studies of developmental stuttering. J Commun Disord 34:493–516PubMedCrossRefGoogle Scholar
  47. Ingham RJ, Fox PT, Ingham JC (2004) Brain correlates of stuttering and syllable production: gender comparison and replication. J Speech Lang Hear Res 47:321–341PubMedCrossRefGoogle Scholar
  48. Kang C, Drayna D (2011) Genetics of speech and language disorders. Annu Rev Genomics Hum Genet 22(12):145–164CrossRefGoogle Scholar
  49. Kaplan PW, Stagg R (2011) Frontal lobe nonconvulsive status epilepticus: a case of epileptic stuttering, aphemia, and aphasia—not a sign of psychogenic nonepileptic seizures. Epilepsy Behav 21(2):191–195PubMedCrossRefGoogle Scholar
  50. Kikuchi Y, Ogata K, Umesaki T, Yoshiura T, Kenjo M, Hirano Y, Okamoto T, Komune S, Tobimatsu S (2011) Spatiotemporal signatures of an abnormal auditory system in stuttering. NeuroImage 55(3):891–899PubMedCrossRefGoogle Scholar
  51. Lan J, Song M, Pan C, Zhuang G, Wang Y, Ma W, Chu Q, Lai Q, Xu F, Li Y, Liu L, Wang W (2009) Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. J Hum Genet 54(8):457–460PubMedCrossRefGoogle Scholar
  52. Levelt W (1989) Speaking: from intention to articulation. MIT Press, CambridgeGoogle Scholar
  53. Levelt W (1998) The genetic perspective in psycholinguistics or where do spoken words come from? J Psycholinguist Res 27:167–180CrossRefGoogle Scholar
  54. Levelt WJ, Praamstra P, Meyer AS, Helenius P, Salmelin R (1998) An MEG study of picture naming. J Cogn Neurosci 10(5):553–567PubMedCrossRefGoogle Scholar
  55. Levelt WJM, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22:1–75PubMedGoogle Scholar
  56. Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–461PubMedCrossRefGoogle Scholar
  57. Liu Z, Ding L, He B (2006) Integration of EEG/MEG with MRI and fMRI. IEEE Eng Med Biol Mag 25(4):46–53PubMedPubMedCentralCrossRefGoogle Scholar
  58. Loucks T, Kraft SJ, Choo AL, Sharma H, Ambrose NG (2011) Functional brain activation differences in stuttering identified with a rapid fMRI sequence. J Fluen Disord 36(4):302–307CrossRefGoogle Scholar
  59. Lu C, Chen C, Ning N, Ding G, Guo T, Peng D, Yang Y, Li K, Lin C (2010) The neural substrates for atypical planning and execution of word production in stuttering. Exp Neurol 221(1):146–156PubMedCrossRefGoogle Scholar
  60. Ludlow CL (2000) Stuttering: dysfunction in a complex and dynamic system. Brain 123(10):1983–1984PubMedCrossRefGoogle Scholar
  61. MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, McKenzie F, Smith RL, Monaco AP, Fisher SE (2005) Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet 76(6):1074–1080PubMedPubMedCentralCrossRefGoogle Scholar
  62. MacKay D (1987) The organization of perception and action: a theory for language and other cognitive skills. Springer, New YorkCrossRefGoogle Scholar
  63. Maguire GA, Franklin DL, Kirsten J (2011) Asenapine for the treatment of stuttering: an analysis of three cases. Am J Psychiatry 168(6):651–652PubMedCrossRefGoogle Scholar
  64. Marslen-Wilson WD, Tyler L (1980) The temporal structure of spoken language understanding. Cognition 8:1–71PubMedCrossRefGoogle Scholar
  65. McClelland J (1991) Stochastic interactive processes and the effect of context on perception. Cogn Psychol 23:1–44PubMedCrossRefGoogle Scholar
  66. McClelland JL, Elman J (1986) The TRACE model of speech perception. Cogn Psychol 18:1–86PubMedCrossRefGoogle Scholar
  67. Moran JE, Bowyer S, Tepley N (2005) Multi-resolution FOCUSS: a source imaging technique applied to MEG data. Brain Topogr 18:1–17PubMedCrossRefGoogle Scholar
  68. Movsessian P (2005) Neuropharmacology of theophylline induced stuttering: the role of dopamine, adenosine and GABA. Med Hypotheses 64(2):290–297PubMedCrossRefGoogle Scholar
  69. Newbury DF, Monaco AP (2010) Genetic advances in the study of speech and language disorders. Neuron 68(2):309–320PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ratner NB (2010) Translating recent research into meaningful clinical practice. Semin Speech Lang 31(4):236–249PubMedCrossRefGoogle Scholar
  71. Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118(2):237–254PubMedCrossRefGoogle Scholar
  72. Salmelin R, Schnitzler A, Schmitz F, Jäncke L, Witte OW, Freund HJ (1998) Functional organization of the auditory cortex is different in stutterers and fluent speakers. Neuroreport 9(10):2225–2229PubMedCrossRefGoogle Scholar
  73. Salmelin R, Schnitzler A, Schmitz F, Freund H-J (2000) Single word reading in developmental stutterers and fluent speakers. Brain 123:1184–1202PubMedCrossRefGoogle Scholar
  74. Shattuck-Hufnagel S (1979) Speech errors as evidence for a serial ordering mechanism in sentence production. Erlbaum, HillsideGoogle Scholar
  75. Shattuck-Hufnagel S (1987) The role of word-onset consonants in speech production planning: new evidence from speech error patterns. Erlbaum, HillsdaleGoogle Scholar
  76. Simos PG, Breier JI, Zouridakis G, Papanicolaou AC (1998) Identification of language-specific brain activity using magnetoencephalography. J Clin Exp Neuropsychol 20(5):706–722PubMedCrossRefGoogle Scholar
  77. Simos PG, Castillo EM et al.(2001) Mapping of receptive language cortex in bilingual volunteers by using magnetic source imaging. J Neurosurg 95(1):76–81PubMedCrossRefPubMedCentralGoogle Scholar
  78. Stemberger J (1985) An interactive activation model of language production. Erlbaum, LondonGoogle Scholar
  79. Tarkianine A, Helenius P, Hansen PC, Cornelissen PL, Salmelin R (1999) Dynamics of letter sting perception in the human occipitotemporal cortex. Brain 122:2119–2132CrossRefGoogle Scholar
  80. Tavano A, Busan P, Borelli M, Pelamatti G (2011) Risperidone reduces tic-like motor behaviors and linguistic dysfluencies in severe persistent developmental stuttering. J Clin Psychopharmacol 31(1):131–134PubMedCrossRefGoogle Scholar
  81. Theys C, van Wieringen A, De Nil LF (2008) A clinician survey of speech and non-speech characteristics of neurogenic stuttering. J Fluen Disord 33(1):1–23CrossRefGoogle Scholar
  82. Toyomura A, Fujii T, Kuriki S (2011) Effect of external auditory pacing on the neural activity of stuttering speakers. NeuroImage 57(4):1507–1516PubMedCrossRefGoogle Scholar
  83. Van Borsel J, Tetnowski JA (2007) Fluency disorders in genetic syndromes. J Fluen Disord 32(4):279–296CrossRefGoogle Scholar
  84. Walla P, Mayer D, Deecke L, Thurner S (2004) The lack of focused anticipation of verbal information in stutterers: a magnetoencephalographic study. NeuroImage 22(3):1321–1327PubMedCrossRefGoogle Scholar
  85. Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131:50–59PubMedCrossRefGoogle Scholar
  86. Weber-Fox C (2001) Neural systems for sentence processing in stuttering. J Speech Lang Hear Res 44:814–825PubMedCrossRefGoogle Scholar
  87. Weber-Fox C, Spencer RMC, Spruill JE, Smith A (2004) Phonologic processing in adults who stutter: electrophysiological and behavioral evidence. J Speech Lang Hear Res 47:1244–1258PubMedCrossRefGoogle Scholar
  88. Weber-Fox C, Spruill JE, Spencer R, Smith A (2008) Atypical neural functions underlying phonological processing and silent rehearsal in children who stutter. Dev Sci 11(2):321–337PubMedPubMedCentralCrossRefGoogle Scholar
  89. World_Health_Organization (1992) International statistical classification of diseases and related health problems, 10th rev. ICD-10. World_Health_Organization, Geneva, p 387Google Scholar
  90. Xuan Y, Meng C, Yang Y, Zhu C, Wang L, Yan Q, Lin C, Yu C (2012) Resting-state brain activity in adult males who stutter. PLoS One 7(1):1–11CrossRefGoogle Scholar
  91. Yairi E (1993) The early months of stuttering: a developmental study. J Speech Lang Hear Res 36:521–528CrossRefGoogle Scholar
  92. Yairi E, Ambrose N, Cox N (1996) Genetics of stuttering: a critical review. J Speech Hear Res 39(4):771–784PubMedCrossRefGoogle Scholar
  93. Zebrowski PM (1995) The topography of beginning stuttering. J Commun Disord 28(2):75–91PubMedCrossRefGoogle Scholar
  94. Zebrowski P, Buhr A (eds) (2005) Straight talk on stuttering: information, encouragement, and counsel for stutterers, caregivers, and speech-language clinicians. J Fluen Disord 30(2):149–152Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departments of NeurologyHenry Ford HospitalDetroitUSA
  2. 2.Departments of Neurology and Speech PathologyHenry Ford Health systemsDetroitUSA

Section editors and affiliations

  • Nobukazu Nakasato
    • 1
  1. 1.Department of EpileptologyTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations