Selection of Stimulus Parameters for Visual MEG Studies of Sensation and Cognition

  • Cheryl J. AineEmail author
  • Selma Supek
  • Lori Sanfratello
  • Julia M. Stephen
Reference work entry


Historically, MEG investigations of the visual system either attempted to (1) corroborate findings from invasive monkey or basic psychophysical studies as an indirect way to validate MEG results or (2) enhance previously demonstrated clinical event-related potential findings (ERPs) (e.g., multiple sclerosis patients reveal longer ERP peak latencies). We focused on the former with the ultimate goal of developing/testing new stimulus paradigms and clinical applications for assessing cognitive functions such as working memory since several neuropsychiatric and neurological disorders such as schizophrenia and dementia reveal deficits in working memory circuits. However, characterization of neural circuits involved in disorders of the nervous system (i.e., neuromagnetic mapping of networks of regions and their temporal dynamics) presents a tremendous technical challenge. In this chapter we will discuss some of the technical issues we encountered while developing and testing paradigms for basic vision, attention, and working memory and will highlight ways to avoid some of these potential confounds. We will also briefly review the organization of the visual system to provide an overall appreciation for the intricacies of the visual system as well as providing some historical context for the manner in which certain studies have been designed.


Visual system Visual areas Retinotopy Striate Extrastriate Sensory Cognition Working memory Attention Synchronicity Oscillations Cross-correlation Cortical magnification Source localization Connections to Feedback ERPs ERFs FMRI 



This work was supported by NIH grants EY08610, AG020302, and MH080141.


  1. Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahlfors SP, Ilmoniemi RJ, Hamalainen MS (1992) Estimates of visually evoked cortical currents. Electroencephalogr Clin Neurophysiol 82:225–236PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aine CJ, Stephen JM (2002) MEG studies of visual processing. In: Zanni A, Proverbio AM (eds) The cognitive electrophysiology of mind and brain. Academic Press, Amsterdam, pp 93–142Google Scholar
  4. Aine CJ, Supek S, George JS (1995) Temporal dynamics of visual-evoked neuromagnetic sources: effects of stimulus parameters and selective attention. Int J Neurosci 80:79–104PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aine CJ, Supek S, George JS, Ranken D, Lewine J, Sanders J, Best E, Tiee W, Flynn ER, Wood CC (1996) Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex 6:354–361PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aine CJ, Stephen JM, Christner R, Hudson D, Best E (2003) Task relevance enhances early transient and late slow-wave activity of distributed cortical sources. J Comput Neurosci 15:203–221PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montano R, Hayek R, Qualls C, Ranken D, Stephen JM (2010) Different strategies for auditory word recognition in healthy versus normal aging. NeuroImage 49:3319–3330CrossRefGoogle Scholar
  8. Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM (2011) Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr 24:323–339PubMedPubMedCentralCrossRefGoogle Scholar
  9. Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52:1106–1130PubMedCrossRefPubMedCentralGoogle Scholar
  10. Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 91:7041–7045PubMedPubMedCentralCrossRefGoogle Scholar
  11. Armington JC (1964a) Adaptational changes in the human electroretinogram and occipital response. Vis Res 4:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  12. Armington JC (1964b) Relations between electroretinograms and occipital potentials elicited by flickering stimuli. Doc Ophthalmol 18:194–206PubMedCrossRefPubMedCentralGoogle Scholar
  13. Armstrong RA, Slaven A, Harding GF (1991) Visual evoked magnetic fields to flash and pattern in 100 normal subjects. Vis Res 31:1859–1864PubMedCrossRefPubMedCentralGoogle Scholar
  14. Baylis GC, Rolls ET (1987) Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65:614–622PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res Brain Res Rev 20:288–304PubMedCrossRefPubMedCentralGoogle Scholar
  17. Butler SR, Georgiou GA, Glass A, Hancox RJ, Hopper JM, Smith KR (1987) Cortical generators of the CI component of the pattern-onset visual evoked potential. Electroencephalogr Clin Neurophysiol 68:256–267PubMedCrossRefPubMedCentralGoogle Scholar
  18. Camisa J, Bodis-Wollner I (1982) Stimulus parameters and visual evoked potential diagnosis. In: Bodis-Wollner I (ed) Evoked potentials. The New York Academy of Sciences, New York, pp 645–647Google Scholar
  19. Campbell FW, Kulikowski JJ (1972) The visual evoked potential as a function of contrast of a grating pattern. J Physiol 222:345–356PubMedPubMedCentralCrossRefGoogle Scholar
  20. Campbell FW, Maffei L (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol 207:635–652PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414:505PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566PubMedCrossRefPubMedCentralGoogle Scholar
  23. Courtney SM, Ungerleider LG (1997) What fMRI has taught us about human vision. Curr Opin Neurobiol 7:554–561PubMedCrossRefPubMedCentralGoogle Scholar
  24. Damasio A (1989) The brain binds entities and events by multiregional activation from convergence zones. Neurol Comp 1:23–32Google Scholar
  25. Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221PubMedPubMedCentralCrossRefGoogle Scholar
  26. Darcey TM, Ary JP, Fender DH (1980) Spatio-temporal visually evoked scalp potentials in response to partial-field patterned stimulation. Electroencephalogr Clin Neurophysiol 50:348–355PubMedCrossRefPubMedCentralGoogle Scholar
  27. De Monasterio FM, Gouras P (1975) Functional properties of ganglion cells of the rhesus monkey retina. J Physiol 251:167–195PubMedPubMedCentralCrossRefGoogle Scholar
  28. De Yoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11:219–226CrossRefGoogle Scholar
  29. De Yoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Multiple processing streams in occipitotemporal cortex. Nature 371:151–154CrossRefGoogle Scholar
  30. Dhond RP, Witzel T, Dale AM, Halgren E (2007) Spatiotemporal cortical dynamics underlying abstract and concrete word reading. Hum Brain Mapp 28:355–362PubMedPubMedCentralCrossRefGoogle Scholar
  31. Di Russo F, Martinez A, Hillyard SA (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:486–499PubMedCrossRefPubMedCentralGoogle Scholar
  32. Engel AK, Konig P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226Google Scholar
  33. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192PubMedCrossRefPubMedCentralGoogle Scholar
  34. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716PubMedPubMedCentralCrossRefGoogle Scholar
  35. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552PubMedPubMedCentralCrossRefGoogle Scholar
  36. Farah M, Humphreys GW, Rodman HR (1999) Chapter 52: object and face recognition. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San DiegoGoogle Scholar
  37. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci 7:913–922PubMedCrossRefPubMedCentralGoogle Scholar
  39. Friston KJ (1994) Statistical parametric mapping. In: Thatcher MHRW, Zeffiro T, John ER, Huerta M (eds) Functional neuroimaging: technical foundations. Academic Press, New York, pp 79–93Google Scholar
  40. Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fuster JM (1997) Network memory. Trends Neurosci 20:451–459PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fuster JM (2001) The prefrontal cortex–an update: time is of the essence. Neuron 30:319–333CrossRefGoogle Scholar
  43. Fuster JM, Jervey J (1981) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci 2:361–365CrossRefGoogle Scholar
  44. Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31:681–697PubMedCrossRefPubMedCentralGoogle Scholar
  46. Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156PubMedCrossRefPubMedCentralGoogle Scholar
  47. Goldman-Rakic PS (1995) Architecture of the prefrontal cortex and the central executive. Ann N Y Acad Sci 769:71–83PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gray CM (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24(31–47):111–125Google Scholar
  49. Haenny PE, Schiller PH (1988) State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res 69:225–244PubMedCrossRefPubMedCentralGoogle Scholar
  50. Harding GF, Janday B, Armstrong RA (1991) Topographic mapping and source localization of the pattern reversal visual evoked magnetic response. Brain Topogr 4:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  51. Harding GF, Degg C, Anderson SJ, Holliday I, Fylan F, Barnes G, Bedford J (1994) Topographic mapping of the pattern onset evoked magnetic response to stimulation of different portions of the visual field. Int J Psychophysiol 16:175–183PubMedCrossRefPubMedCentralGoogle Scholar
  52. Harter MR (1971) Visually evoked cortical responses to checkerboard patterns: effects of check size as a function of retinal eccentricity. Electroencephalogr Clin Neurophysiol 23:48–54Google Scholar
  53. Hashimoto T, Kashii S, Kikuchi M, Honda Y, Nagamine T, Shibasaki H (1999) Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res 125:375–382PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16:638–650PubMedPubMedCentralCrossRefGoogle Scholar
  55. Holmes G (1945) The organization of the visual cortex in man. Proc R Soc Lond (Biol) 132:348–361CrossRefGoogle Scholar
  56. Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824PubMedPubMedCentralCrossRefGoogle Scholar
  57. Howarth PA, Bradley A (1986) The longitudinal chromatic aberration of the human eye, and its correction. Vis Res 26:361–366PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hupe JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145PubMedCrossRefPubMedCentralGoogle Scholar
  59. Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jeffreys D (1977) The physiological significance of pattern visual evoked potentials. In: Desmedt JE (ed) Visual evoked potentials in man: new developments. Clarendon Press, Oxford, pp 134–167Google Scholar
  61. Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMedPubMedCentralGoogle Scholar
  62. Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40PubMedPubMedCentralGoogle Scholar
  63. Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15:1395–1399PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jerbi K, Baillet S, Mosher JC, Nolte G, Garnero L, Leahy RM (2004) Localization of realistic cortical activity in MEG using current multipoles. NeuroImage 22:779–793PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Morita A, Saito N (2007) Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg 106:90–98PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kaufman L, Williamson SJ (1980) The evoked magnetic field of the human brain. Ann N Y Acad Sci 340:45–65PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633CrossRefGoogle Scholar
  68. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kosslyn SM (1988) Aspects of a cognitive neuroscience of mental imagery. Science 240:1621–1626PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kulikowski JJ (1974) Proceedings: human averaged occipital potentials evoked by pattern and movement. J Physiol 242:70P–71PPubMedPubMedCentralGoogle Scholar
  71. Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lamme VA, Zipser K, Spekreijse H (1998) Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci U S A 95:3263–3268PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361–374PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:147–156PubMedCrossRefPubMedCentralGoogle Scholar
  75. Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468CrossRefPubMedGoogle Scholar
  76. Maclin E, Okada YC, Kaufman L, Williamson SJ (1983) Retinotopic map on the visual cortex for eccentrically placed patterns: first noninvasive measurement. Il Nuovo Cimento 2:410–419CrossRefGoogle Scholar
  77. Maier J, Dagnelie G, Spekreijse H, van Dijk BW (1987) Principal components analysis for source localization of VEPs in man. Vis Res 27:165–177PubMedCrossRefPubMedCentralGoogle Scholar
  78. Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369PubMedCrossRefPubMedCentralGoogle Scholar
  79. Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mehta AD, Ulbert I, Schroeder CE (2000a) Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb Cortex 10:343–358PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mehta AD, Ulbert I, Schroeder CE (2000b) Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cereb Cortex 10:359–370PubMedCrossRefPubMedCentralGoogle Scholar
  82. Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402PubMedCrossRefPubMedCentralGoogle Scholar
  83. Mesulam MM (1998) From sensation to cognition. Brain 121.(Pt 6:1013–1052PubMedCrossRefPubMedCentralGoogle Scholar
  84. Michael WF, Halliday AM (1971) Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Res 32:311–324PubMedCrossRefPubMedCentralGoogle Scholar
  85. Miller EK, Li L, Desimone R (1991) A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254:1377–1379PubMedCrossRefPubMedCentralGoogle Scholar
  86. Milner PM (1974) A model for visual shape recognition. Psychol Rev 81:521–535PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond Ser B Biol Sci 298:83–95CrossRefGoogle Scholar
  88. Motter BC (1994) Neural correlates of feature selective memory and pop-out in extrastriate area V4. J Neurosci 14:2190–2199PubMedCrossRefPubMedCentralGoogle Scholar
  89. Nakamura M, Kakigi R, Okusa T, Hoshiyama M, Watanabe K (2000) Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res 872:77–86PubMedCrossRefPubMedCentralGoogle Scholar
  90. Noesselt T, Hillyard SA, Woldorff MG, Schoenfeld A, Hagner T, Jancke L, Tempelmann C, Hinrichs H, Heinze HJ (2002) Delayed striate cortical activation during spatial attention. Neuron 35:575–587PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, Peters A (eds) Cerebral cortex. Plenum Press, New York, pp 205–241Google Scholar
  92. Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71:316–326PubMedCrossRefPubMedCentralGoogle Scholar
  93. Okada YC, Kaufman L, Brenner D, Williamson SJ (1982) Modulation transfer functions of the human visual system revealed by magnetic field measurements. Vis Res 22:319–333PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ossenblok P, Spekreijse H (1991) The extrastriate generators of the EP to checkerboard onset. A source localization approach. Electroencephalogr Clin Neurophysiol 80:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  95. Perry JNW, Childers DG (1969) The human visual evoked response: method and theory. Charles C Thomas, SpringfieldGoogle Scholar
  96. Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vis Res 25:1795–1810PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5:805–811PubMedCrossRefPubMedCentralGoogle Scholar
  98. Polyak SI (1957) The vertebrate visual system. University of Chicago, ChicagoGoogle Scholar
  99. Ranken DM, Stephen JM, George JS (2004) MUSIC seeded multi-dipole MEG modeling using the constrained start spatio-temporal modeling procedure. Neurol Clin Neurophysiol 2004:80PubMedPubMedCentralGoogle Scholar
  100. Regan D (1972) Evoked potentials in psychology, sensory physiology and clinical medicine. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  101. Regan D (1978) Assessment of visual acuity by evoked potential recording: ambiguity caused by temporal dependence of spatial frequency selectivity. Vis Res 18:439–443PubMedCrossRefPubMedCentralGoogle Scholar
  102. Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  103. Reynolds J, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  104. Richmond BJ, Optican LM (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform. J Neurophysiol 57:147–161PubMedCrossRefPubMedCentralGoogle Scholar
  105. Richmond BJ, Wurtz RH, Sato T (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. J Neurophysiol 50:1415–1432PubMedCrossRefPubMedCentralGoogle Scholar
  106. Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64:351–369PubMedCrossRefPubMedCentralGoogle Scholar
  107. Robson JG (1966) Spatial and temporal contrast-sensitivity functions of the visual system. J Opt Soc Am 56:1141–1142CrossRefGoogle Scholar
  108. Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161CrossRefGoogle Scholar
  109. Roelfsema PR, Lamme VA, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395:376–381PubMedCrossRefPubMedCentralGoogle Scholar
  110. Rovamo J, Virsu V (1979) An estimation and application of the human cortical magnification factor. Exp Brain Res 37:495–510PubMedPubMedCentralCrossRefGoogle Scholar
  111. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sanfratello L, Caprihan A, Stephen JM, Knoefel JE, Adair JC, Qualls C, Lundy SL, Aine CJ (2014) Same task, different strategies: how brain networks can be influenced by memory strategy. Hum Brain Mapp. 35:5127–5140.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MC (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage 44:1224–1238PubMedCrossRefPubMedCentralGoogle Scholar
  114. Seidemann E, Newsome WT (1999) Effect of spatial attention on the responses of area MT neurons. J Neurophysiol 81:1783–1794PubMedCrossRefPubMedCentralGoogle Scholar
  115. Seki K, Nakasato N, Fujita S, Hatanaka K, Kawamura T, Kanno A, Yoshimoto T (1996) Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroencephalogr Clin Neurophysiol 100:436–442PubMedCrossRefPubMedCentralGoogle Scholar
  116. Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5:272–276PubMedCrossRefPubMedCentralGoogle Scholar
  117. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRefGoogle Scholar
  118. Shigeto H, Tobimatsu S, Yamamoto T, Kobayashi T, Kato M (1998) Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurol Sci 156:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  119. Shipp S, Zeki S (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315:322–325PubMedCrossRefPubMedCentralGoogle Scholar
  120. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586CrossRefGoogle Scholar
  121. Spector RH, Glaser JS, David NJ, Vining DQ (1981) Occipital lobe infarctions: perimetry and computed tomography. Neurology 31:1098–1106PubMedCrossRefPubMedCentralGoogle Scholar
  122. Squire LR (1986) Mechanisms of memory. Science 232:1612–1619PubMedCrossRefPubMedCentralGoogle Scholar
  123. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386PubMedCrossRefPubMedCentralGoogle Scholar
  124. Steinmetz H, Seitz RJ (1991) Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia 29:1149–1161PubMedCrossRefPubMedCentralGoogle Scholar
  125. Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755PubMedCrossRefPubMedCentralGoogle Scholar
  126. Stephen JM, Aine CJ, Christner RF, Ranken D, Huang M, Best E (2002) Central versus peripheral visual field stimulation results in timing differences in dorsal stream sources as measured with MEG. Vis Res 42:3059–3074PubMedCrossRefPubMedCentralGoogle Scholar
  127. Stephen JM, Aine CJ, Ranken D, Hudson D, Shih JJ (2003) Multidipole analysis of simulated epileptic spikes with real background activity. J Clin Neurophysiol 20:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  128. Stephen JM, Ranken D, Aine CJ (2006) Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation. Brain Topogr 18:257–272PubMedCrossRefPubMedCentralGoogle Scholar
  129. Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, Tronnier VM, Sartor K (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–836PubMedCrossRefPubMedCentralGoogle Scholar
  130. Stone J, Johnston E (1981) The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys. J Comp Neurol 196:205–223PubMedCrossRefPubMedCentralGoogle Scholar
  131. Supek S, Aine CJ, Ranken D, Best E, Flynn ER, Wood CC (1999) Single versus paired visual stimulation: superposition of early neuromagnetic responses and retinotopy in extrastriate cortex in humans. Brain Res 830:43–55PubMedCrossRefPubMedCentralGoogle Scholar
  132. Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW (2006) fMRI study of language lateralization in children and adults. Hum Brain Mapp 27:202–212PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tallon-Baudry C, Mandon S, Freiwald WA, Kreiter AK (2004) Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. Cereb Cortex 14:713–720PubMedCrossRefPubMedCentralGoogle Scholar
  134. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998a) The retinotopy of visual spatial attention. Neuron 21:1409–1422PubMedCrossRefPubMedCentralGoogle Scholar
  136. Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998b) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci U S A 95:811–817PubMedPubMedCentralCrossRefGoogle Scholar
  137. Tulving E (1995) Organization of memory: quo vadis. MIT Press, CambridgeGoogle Scholar
  138. Ungerleider LG (1995) Functional brain imaging studies of cortical mechanisms for memory. Science 270:769–775PubMedCrossRefPubMedCentralGoogle Scholar
  139. Ungerleider LG, Desimone R (1986) Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. J Comp Neurol 248:147–163PubMedCrossRefPubMedCentralGoogle Scholar
  140. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586Google Scholar
  141. Van Essen DC (1979) Visual areas of the mammalian cerebral cortex. Annu Rev Neurosci 2:227–263PubMedCrossRefPubMedCentralGoogle Scholar
  142. Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum, New York, pp 259–329Google Scholar
  143. Van Essen DC, Maunsell JH (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375CrossRefGoogle Scholar
  144. Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wheeler ME, Petersen SE, Buckner RL (2000) Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc Natl Acad Sci U S A 97:11125–11129PubMedPubMedCentralCrossRefGoogle Scholar
  146. Williamson SJ, Kaufman L, Brenner D (1978) Latency of the neuromagnetic response of the human visual cortex. Vis Res 18:107–110PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958PubMedCrossRefPubMedCentralGoogle Scholar
  148. Wright MJ, Ikeda H (1974) Processing of spatial and temporal information in the visual system. In: Schmitt FO, Worden FG (eds) The neurosciences. MIT Press, Cambridge, pp 115–122Google Scholar
  149. Zeki SM (1973) Colour coding in rhesus monkey prestriate cortex. Brain Res 53:422–427PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zeki SM (1978) Functional specialisation in the visual cortex of the rhesus monkey. Nature 274:423–428PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zeki S (1980) A direct projection from area V1 to area V3A of rhesus monkey visual cortex. Proc R Soc Lond B Biol Sci 207:499–506PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cheryl J. Aine
    • 1
    • 2
    Email author
  • Selma Supek
    • 3
  • Lori Sanfratello
    • 4
  • Julia M. Stephen
    • 5
  1. 1.Department of RadiologyUniversity of New Mexico School of MedicineAlbuquerqueUSA
  2. 2.The Mind Research NetworkAlbuquerqueUSA
  3. 3.Faculty of Science, Department of PhysicsUniversity of ZagrebZagrebCroatia
  4. 4.The MIND Research NetworkAlbuquerqueUSA
  5. 5.The Mind Research Network and Lovelace Biomedical and Environmental Research InstituteAlbuquerqueUSA

Section editors and affiliations

  • Catherine Tallon-Baudry

There are no affiliations available

Personalised recommendations