Abstract
This chapter reviews auditory research performed with magnetoencephalography (MEG) in normal listeners, with an emphasis on the auditory cortex. The first section provides an overview of basic characteristics of auditory-evoked fields and their classification. The second section reviews the relationship between a selection of basic auditory features – including lateralization, periodicity, and spectral content – and auditory-evoked fields generated in the auditory cortex. The final section highlights recent MEG research in the field of auditory scene analysis, focusing specifically on auditory stream segregation, selective attention, and informational masking.
Keywords
Auditory cortex Auditory-evoked fields Selective adaptation Pitch Sound lateralization Vowel Auditory scene analysis Stream segregation Selective attention Informational masking Perceptual awarenessNotes
Acknowledgments
This work was supported by Bundesministerium für Bildung and Forschung (BMBF, grant 01EV 0712) and by Deutsche Forschungsgemeinschaft (DFG, grant GU 593/5-1).
References
- Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc Natl Acad Sci U S A 98:13367–13372PubMedPubMedCentralCrossRefGoogle Scholar
- Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103:14608–14613PubMedPubMedCentralCrossRefGoogle Scholar
- Ahveninen J, Hämäläinen M, Jääskeläinen IP, Ahlfors SP, Huang S, Lin FH, Raij T, Sams M, Vasios CE, Belliveau JW (2011) Attention – driven auditory cortex short—term plasticity helps segregate relevant sounds from noise. Proc Natl Acad Sci U S A 108:4182–4187PubMedPubMedCentralCrossRefGoogle Scholar
- Ahveninen J, Seidman LJ, Chang WT, Hämäläinen MS, Huang S (2017) Suppression of irrelevant sounds during auditory working memory. NeuroImage 161:1–8PubMedPubMedCentralCrossRefGoogle Scholar
- Aiken SJ, Picton TW (2008) Human cortical responses to the speech envelope. Ear Hear 29:139–157PubMedCrossRefPubMedCentralGoogle Scholar
- Anurova I, Artchakov D, Korvenoja A, Ilmoniemi RJ, Aronen HJ, Carlson S (2005) Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks. Clin Neurophysiol 116:1644–1654PubMedCrossRefPubMedCentralGoogle Scholar
- Barascud N, Pearce M, Griffiths T, Friston K, Chait M (2015) MEG responses in humans reveal ideal-observer-like sensitivity to complex acoustic patterns. Proc Natl Acad Sci U S A 113:E616–E625CrossRefGoogle Scholar
- Barker D, Plack CJ, Hall DA (2012) Reexamining the evidence for a pitch-sensitive region: a human fMRI study using iterated ripple noise. Cereb Cortex 22:745–753PubMedCrossRefPubMedCentralGoogle Scholar
- Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403(6767):309–312. https://doi.org/10.1038/35002078CrossRefPubMedPubMedCentralGoogle Scholar
- Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27:9252–9261PubMedPubMedCentralCrossRefGoogle Scholar
- Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84:2426–2439PubMedCrossRefPubMedCentralGoogle Scholar
- Billig AJ, Davis MH, Carlyon RP (2018) Neural decoding of bistable sounds reveals an effect of intention on perceptual organization. bioRxiv. https://doi.org/10.1101/206417
- Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528PubMedCrossRefPubMedCentralGoogle Scholar
- Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge, MAGoogle Scholar
- Braak H (1978) The pigment architecture of the human temporal lobe. Anat embryol (Berlin) 154:213–240CrossRefGoogle Scholar
- Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge, MACrossRefGoogle Scholar
- Brodbeck C, Hong LE, Simon JZ (2018) Rapid transformation from auditory to linguistic representations of continuous speech. Curr Biol 24:3976–3983CrossRefGoogle Scholar
- Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 34:1454–1465CrossRefGoogle Scholar
- Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374PubMedPubMedCentralCrossRefGoogle Scholar
- Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am 44:945–950PubMedCrossRefPubMedCentralGoogle Scholar
- Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225PubMedPubMedCentralCrossRefGoogle Scholar
- Capilla A, Belin P, Gross J (2013) The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG. Cereb Cortex 23:1388–1395PubMedCrossRefPubMedCentralGoogle Scholar
- Carl D, Gutschalk A (2013) Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences. Exp Brain Res 224:557–570PubMedCrossRefPubMedCentralGoogle Scholar
- Carver FW, Fuchs A, Jantzen KJ, Kelso JA (2002) Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clin Neurophysiol 113:1921–1931PubMedCrossRefPubMedCentralGoogle Scholar
- Chait M, Poeppel D, Simon JZ (2006) Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb Cortex 16:835–848PubMedCrossRefPubMedCentralGoogle Scholar
- Chait M, Poeppel D, de Cheveigne A, Simon JZ (2007) Processing asymmetry of transitions between order and disorder in human auditory cortex. J Neurosci 27:5207–5214PubMedPubMedCentralCrossRefGoogle Scholar
- Chakalov I, Draganova R, Wollbrink A, Preissl H, Pantev C (2012) Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magneto encephalographic study. BMC Neurosci 13:72PubMedPubMedCentralCrossRefGoogle Scholar
- Cherry C (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–981CrossRefGoogle Scholar
- Chiappa KH, Hill RA (1997) Brain stem auditory evoked potentials: interpretation. In: Chiappa KH (ed) Evoked potentials in clinical medicine. Raven Press, New York, pp 199–268Google Scholar
- Coffey EBJ, Herholz SC, Chepesiuk AMP, Baillet S, Zatorre RJ (2016) Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun 7:1–11CrossRefGoogle Scholar
- Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582PubMedCrossRefPubMedCentralGoogle Scholar
- Crosse MJ, Di Liberto GM, Bednar A, Lalor EC (2016) The multivariate temporal response function (mTRF) toolbox: a matlab toolbox for relating neural signals to continuous stimuli. Front Hum Neurosci 10:604PubMedPubMedCentralCrossRefGoogle Scholar
- Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530–1540PubMedCrossRefPubMedCentralGoogle Scholar
- Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227PubMedPubMedCentralCrossRefGoogle Scholar
- Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefGoogle Scholar
- Di Liberto GM, O’Sullivan JA, Lalor EC (2015) Low-frequency cortical entrainment to speech reflects phoneme-level processing. Curr Biol 25:2457–2465PubMedCrossRefPubMedCentralGoogle Scholar
- Diesch E, Luce T (2000) Topographic and temporal indices of vowel spectral envelope extraction in the human auditory cortex. J Cogn Neurosci 12:878–893PubMedCrossRefPubMedCentralGoogle Scholar
- Ding N, Simon JZ (2012a) Emergence of neural encoding of auditory objects while listening to competing speakers. Proc Natl Acad Sci U S A 109:11854–11859PubMedPubMedCentralCrossRefGoogle Scholar
- Ding N, Simon JZ (2012b) Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J Neurophysiol 107:78–89PubMedCrossRefPubMedCentralGoogle Scholar
- Durlach NI, Mason CR, Kidd G Jr, Arbogast TL, Colburn HS, Shinn-Cunningham BG (2003) Note on informational masking. J Acoust Soc Am 113:2984–2987PubMedCrossRefPubMedCentralGoogle Scholar
- Dykstra AR, Gutschalk A (2015) Does the mismatch negativity operate on a consciously accessible memory trace? Sci Adv 1:e1500677PubMedPubMedCentralCrossRefGoogle Scholar
- Dykstra AR, Halgren E, Thesen T, Carlson CE, Doyle W, Madsen JR, Eskandar EN, Cash SS (2011) Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Front Hum Neurosci 5:74PubMedPubMedCentralCrossRefGoogle Scholar
- Dykstra AR, Burchard D, Starzynski C, Riedel H, Rupp A, Gutschalk A (2016) Lateralization and binaural interaction of middle-latency and late-brainstem components of the auditory evoked response. J Assoc Res Otolaryngol 17:357–370PubMedPubMedCentralCrossRefGoogle Scholar
- Dykstra AR, Cariani P, Gutschalk A (2017) A roadmap for conscious audition and its neural underpinnings. Philos Trans R Soc Lond B Biol Sci 372:20160103Google Scholar
- Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280PubMedCrossRefPubMedCentralGoogle Scholar
- Elhilali M, Xiang J, Shamma SA, Simon JZ (2009) Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biol 7:e1000129PubMedPubMedCentralCrossRefGoogle Scholar
- Erné SN, Scheer HJ, Hoke M, Pantev C, Lütkenhöner B (1987) Brainstem auditory evoked magnetic fields in response to stimulation with brief tone pulses. Int J Neurosci 37:115–125PubMedCrossRefPubMedCentralGoogle Scholar
- Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15:2748–2755PubMedCrossRefPubMedCentralGoogle Scholar
- Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758PubMedPubMedCentralCrossRefGoogle Scholar
- Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMedCrossRefPubMedCentralGoogle Scholar
- Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610PubMedCrossRefPubMedCentralGoogle Scholar
- Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 78:2643–2647PubMedPubMedCentralCrossRefGoogle Scholar
- Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463PubMedPubMedCentralCrossRefGoogle Scholar
- Giani AS, Belardinelli P, Ortiz E, Kleiner M, Noppeney U (2015) Detecting tones in complex auditory scenes. NeuroImage 122:203–213PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Uppenkamp S (2011) Sustained responses for pitch and vowels map to similar sites in human auditory cortex. NeuroImage 56:1578–1587PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Scherg M, Picton TW, Mase R, Roth R, Ille N, Klenk A, Hähnel S (1998) Multiple source components of middle and late latency auditory evoked fields. In: Kakigi R, Hashimoto I (eds) Recent advances in human neurophysiology. Elsevier, Amsterdam, pp 270–278Google Scholar
- Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hähnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2004a) Temporal dynamics of pitch in human auditory cortex. NeuroImage 22:755–766PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Patterson RD, Uppenkamp S, Scherg M, Rupp A (2004b) Recovery and refractoriness of auditory evoked fields after gaps in click trains. Eur J Neurosci 20:3141–3147PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388PubMedPubMedCentralCrossRefGoogle Scholar
- Gutschalk A, Oxenham AJ, Micheyl C, Wilson EC, Melcher JR (2007a) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074–13081PubMedPubMedCentralCrossRefGoogle Scholar
- Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2007b) The effect of temporal context on the sustained pitch response in human auditory cortex. Cereb Cortex 17:552–561PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Micheyl C, Oxenham AJ (2008) Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol 6:e138PubMedPubMedCentralCrossRefGoogle Scholar
- Gutschalk A, Oldermann K, Rupp A (2009) Rate perception and the auditory 40-Hz steady-state fields evoked by two-tone sequences. Hear Res 257:83–92PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Hämäläinen MS, Melcher JR (2010) BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. J Neurophysiol 103:2015–2026PubMedPubMedCentralCrossRefGoogle Scholar
- Gutschalk A, Brandt T, Bartsch A, Jansen C (2012) Comparison of auditory deficits associated with neglect and auditory cortex lesions. Neuropsychologia 50:926–938PubMedCrossRefPubMedCentralGoogle Scholar
- Gutschalk A, Uppenkamp S, Riedel B, Bartsch A, Brandt T, Vogt-Schaden M (2015) Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus. Cortex 73:24–35PubMedCrossRefPubMedCentralGoogle Scholar
- Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222PubMedCrossRefPubMedCentralGoogle Scholar
- Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164PubMedCrossRefPubMedCentralGoogle Scholar
- Halgren E, Sherfey J, Irimia A, Dale AM, Marinkovic K (2011) Sequential temporo-fronto-temporal activation during monitoring of the auditory environment for temporal patterns. Hum Brain Mapp 32:1260–1276PubMedCrossRefPubMedCentralGoogle Scholar
- Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol 49:277–290PubMedCrossRefPubMedCentralGoogle Scholar
- Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res 40:237–240PubMedCrossRefPubMedCentralGoogle Scholar
- Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569PubMedPubMedCentralCrossRefGoogle Scholar
- Hari R, Pelizzone M, Mäkelä JP, Hallstrom J, Leinonen L, Lounasmaa OV (1987) Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts. Audiology 26:31–43PubMedCrossRefPubMedCentralGoogle Scholar
- Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039PubMedCrossRefPubMedCentralGoogle Scholar
- Hashimoto I (1982) Auditory evoked potentials from the human midbrain: slow brain stem responses. Electroencephalogr Clin Neurophysiol 53:652–657PubMedCrossRefPubMedCentralGoogle Scholar
- Hashimoto I, Mashiko T, Yoshikawa K, Mizuta T, Imada T, Hayashi M (1995) Neuromagnetic measurements of the human primary auditory response. Electroencephalogr Clin Neurophysiol 96:348–356PubMedCrossRefPubMedCentralGoogle Scholar
- Hertrich I, Dietrich S, Trouvain J, Moos A, Ackermann H (2012) Magnetic brain activity phase-locked to the envelope, the syllable onsets, and the fundamental frequency of a perceived speech signal. Psychophysiology 49:322–334PubMedCrossRefPubMedCentralGoogle Scholar
- Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180PubMedCrossRefPubMedCentralGoogle Scholar
- Imada T, Hari R, Loveless N, McEvoy L, Sams M (1993) Determinants of the auditory mismatch response. Electroencephalogr Clin Neurophysiol 87:144–153PubMedCrossRefPubMedCentralGoogle Scholar
- Imada T, Watanabe M, Mashiko T, Kawakatsu M, Kotani M (1997) The silent period between sounds has a stronger effect than the interstimulus interval on auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 102:37–45PubMedCrossRefPubMedCentralGoogle Scholar
- Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci U S A 101:6809–6814PubMedPubMedCentralCrossRefGoogle Scholar
- John MS, Lins OG, Boucher BL, Picton TW (1998) Multiple auditory steady-state responses (MASTER): stimulus and recording parameters. Audiology 37:59–82PubMedCrossRefPubMedCentralGoogle Scholar
- Joutsiniemi SL, Hari R, Vilkman V (1989) Cerebral magnetic responses to noise bursts and pauses of different durations. Audiology 28:325–333PubMedCrossRefPubMedCentralGoogle Scholar
- Kahlbrock N, Butz M, May ES, Schnitzler A (2012) Sustained gamma band synchronization in early visual areas reflects the level of selective attention. NeuroImage 59:673–681PubMedCrossRefPubMedCentralGoogle Scholar
- Kaiser J, Lutzenberger W, Preissl H, Ackermann H, Birbaumer N (2000) Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci 20:6631–6639PubMedPubMedCentralCrossRefGoogle Scholar
- Königs L, Gutschalk A (2012) Functional lateralization in auditory cortex under informational masking and in silence. Eur J Neurosci 36:3283–3290PubMedCrossRefPubMedCentralGoogle Scholar
- Kretzschmar B, Gutschalk A (2010) A sustained deviance response evoked by the auditory oddball paradigm. Clin Neurophysiol 121:524–532PubMedCrossRefPubMedCentralGoogle Scholar
- Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, Lütkenhoner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cereb Cortex 13:765–772PubMedCrossRefPubMedCentralGoogle Scholar
- Lakatos P, Barczak A, Neymotin SA, Mcginnis T, Ross S, Javitt DC, Connell MNO (2016) Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci 19:1707–1717PubMedPubMedCentralCrossRefGoogle Scholar
- Larson E, Lee AK (2012) The cortical dynamics underlying effective switching of auditory spatial attention. NeuroImage 64:365–370PubMedPubMedCentralCrossRefGoogle Scholar
- Lavie N (2006) The role of perceptual load in visual awareness. Brain Res 1080:91–100PubMedCrossRefPubMedCentralGoogle Scholar
- Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114(Pt 1A):139–151PubMedPubMedCentralGoogle Scholar
- Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92:204–214PubMedCrossRefPubMedCentralGoogle Scholar
- Linden DE (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576PubMedCrossRefPubMedCentralGoogle Scholar
- Loveless N, Levanen S, Jousmaki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228PubMedCrossRefPubMedCentralGoogle Scholar
- Lü ZL, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res 572:236–241PubMedCrossRefPubMedCentralGoogle Scholar
- Lütkenhöner B, Steinstrater O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootology 3:191–213CrossRefGoogle Scholar
- Lütkenhöner B, Lammertmann C, Ross B, Pantev C (2000) Brain stem auditory evoked fields in response to clicks. Neuroreport 11:913–918PubMedCrossRefPubMedCentralGoogle Scholar
- Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694PubMedCrossRefGoogle Scholar
- Mäkelä JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66:539–546PubMedCrossRefPubMedCentralGoogle Scholar
- Mäkelä JP, Hari R, Leinonen L (1988) Magnetic responses of the human auditory cortex to noise/square wave transitions. Electroencephalogr Clin Neurophysiol 69:423–430PubMedCrossRefPubMedCentralGoogle Scholar
- Mäkelä JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama JP (1993) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1:48–56CrossRefGoogle Scholar
- Mäkelä JP, Hämäläinen M, Hari R, McEvoy L (1994) Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 92:414–421PubMedCrossRefPubMedCentralGoogle Scholar
- May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122PubMedCrossRefPubMedCentralGoogle Scholar
- May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Näätänen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99–120PubMedCrossRefPubMedCentralGoogle Scholar
- Mazaheri A, Van Schouwenburg MR, Dimitrijevic A, Denys D, Cools R, Jensen O (2014) Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage 87:356–362PubMedCrossRefPubMedCentralGoogle Scholar
- McEvoy L, Hari R, Imada T, Sams M (1993) Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. Hear Res 67:98–109PubMedCrossRefPubMedCentralGoogle Scholar
- McEvoy L, Mäkelä JP, Hämäläinen M, Hari R (1994) Effect of interaural time differences on middle-latency and late auditory evoked magnetic fields. Hear Res 78:249–257PubMedCrossRefPubMedCentralGoogle Scholar
- McEvoy L, Levanen S, Loveless N (1997) Temporal characteristics of auditory sensory memory: neuromagnetic evidence. Psychophysiology 34:308–316PubMedCrossRefPubMedCentralGoogle Scholar
- Meyer K (2011) Primary sensory cortices, top-down projections and conscious experience. Prog Neurobiol 94:408–417PubMedCrossRefPubMedCentralGoogle Scholar
- Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638CrossRefGoogle Scholar
- Millman RE, Prendergast G, Hymers M, Green GG (2013) Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”? NeuroImage 64:185–196PubMedCrossRefPubMedCentralGoogle Scholar
- Moore BCJ (2012) An introduction to the psychology of hearing. Emerald, BingleyGoogle Scholar
- Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701PubMedCrossRefPubMedCentralGoogle Scholar
- Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat embryol (Berlin) 210:401–406CrossRefGoogle Scholar
- Müller N, Weisz N (2012) Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. Cereb Cortex 22:1604–1613PubMedCrossRefPubMedCentralGoogle Scholar
- Näätänen R (1982) Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull 92:605–640PubMedCrossRefPubMedCentralGoogle Scholar
- Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425PubMedCrossRefGoogle Scholar
- Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica (Amsterdam) 42:313–329CrossRefGoogle Scholar
- Näätänen R, Sams M, Alho K, Paavilainen P, Reinikainen K, Sokolov EN (1988) Frequency and location specificity of the human vertex N1 wave. Electroencephalogr Clin Neurophysiol 69:523–531PubMedCrossRefPubMedCentralGoogle Scholar
- Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22PubMedCrossRefGoogle Scholar
- Nourski KV, Brugge JF, Reale RA, Kovach CK, Oya H, Kawasaki H, Jenison RL, Howard MA 3rd (2013) Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. J Neurophysiol 109:1283–1295PubMedCrossRefPubMedCentralGoogle Scholar
- Obleser J, Lahiri A, Eulitz C (2004) Magnetic brain response mirrors extraction of phonological features from spoken vowels. J Cogn Neurosci 16:31–39PubMedCrossRefPubMedCentralGoogle Scholar
- Obleser J, Scott SK, Eulitz C (2006) Now you hear it, now you don’t: transient traces of consonants and their nonspeech analogues in the human brain. Cereb Cortex 16:1069–1076PubMedCrossRefPubMedCentralGoogle Scholar
- Obleser J, Wostmann M, Hellbernd N, Wilsch A, Maess B (2012) Adverse listening conditions and memory load drive a common alpha oscillatory network. J Neurosci 32:12376–12383PubMedPubMedCentralCrossRefGoogle Scholar
- Okamoto H, Stracke H, Ross B, Kakigi R, Pantev C (2007a) Left hemispheric dominance during auditory processing in noisy environment. BMC Biol 5:52PubMedPubMedCentralCrossRefGoogle Scholar
- Okamoto H, Stracke H, Wolters CH, Schmael F, Pantev C (2007b) Attention improves population-level frequency tuning in human auditory cortex. J Neurosci 27:10383–10390PubMedPubMedCentralCrossRefGoogle Scholar
- Okamoto H, Stracke H, Bermudez P, Pantev C (2011) Sound processing hierarchy within human auditory cortex. J Cogn Neurosci 23:1855–1863PubMedCrossRefPubMedCentralGoogle Scholar
- Palomaki KJ, Tiitinen H, Mäkinen V, May PJ, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Cogn Brain Res 24:364–379CrossRefGoogle Scholar
- Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Lütkenhöner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61PubMedCrossRefGoogle Scholar
- Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69:160–170PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90:82–90PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Eulitz C, Hampson S, Ross B, Roberts LE (1996a) The auditory evoked “off” response: sources and comparison with the “on” and the “sustained” responses. Ear Hear 17:255–265PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996b) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74PubMedCrossRefPubMedCentralGoogle Scholar
- Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, Kubo T (2004) Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci 19:2337–2344PubMedCrossRefPubMedCentralGoogle Scholar
- Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782PubMedCrossRefPubMedCentralGoogle Scholar
- Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776PubMedCrossRefPubMedCentralGoogle Scholar
- Pelizzone M, Hari R, Mäkelä JP, Huttunen J, Ahlfors S, Hämäläinen M (1987) Cortical origin of middle-latency auditory evoked responses in man. Neurosci Lett 82:303–307PubMedCrossRefPubMedCentralGoogle Scholar
- Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190PubMedCrossRefPubMedCentralGoogle Scholar
- Poghosyan V, Ioannides AA (2008) Attention modulates earliest responses in the primary auditory and visual cortices. Neuron 58:802–813PubMedCrossRefPubMedCentralGoogle Scholar
- Prendergast G, Johnson SR, Green GG (2010) Temporal dynamics of sinusoidal and non-sinusoidal amplitude modulation. Eur J Neurosci 32:1599–1607PubMedCrossRefPubMedCentralGoogle Scholar
- Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9:e1000610PubMedPubMedCentralCrossRefGoogle Scholar
- Reite M, Edrich J, Zimmermann JT, Zimmerman JE (1978) Human magnetic auditory evoked fields. Electroencephalogr Clin Neurophysiol 45:114–117PubMedCrossRefPubMedCentralGoogle Scholar
- Reite M, Zimmerman JT, Zimmerman JE (1981) Magnetic auditory evoked fields: interhemispheric asymmetry. Electroencephalogr Clin Neurophysiol 51:388–392PubMedCrossRefPubMedCentralGoogle Scholar
- Rif J, Hari R, Hämäläinen MS, Sams M (1991) Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr Clin Neurophysiol 79:464–472PubMedCrossRefPubMedCentralGoogle Scholar
- Ritter S, Dosch HG, Specht HJ, Rupp A (2005) Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. NeuroImage 27:533–543PubMedCrossRefPubMedCentralGoogle Scholar
- Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304PubMedCrossRefPubMedCentralGoogle Scholar
- Roberts TP, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. Neuroreport 7:1138–1140PubMedCrossRefPubMedCentralGoogle Scholar
- Rogers RL, Baumann SB, Papanicolaou AC, Bourbon TW, Alagarsamy S, Eisenberg HM (1991) Localization of the P3 sources using magnetoencephalography and magnetic resonance imaging. Electroencephalogr Clin Neurophysiol 79:308–321PubMedCrossRefPubMedCentralGoogle Scholar
- Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340PubMedCrossRefPubMedCentralGoogle Scholar
- Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165:68–84PubMedCrossRefPubMedCentralGoogle Scholar
- Ross B, Draganova R, Picton TW, Pantev C (2003) Frequency specificity of 40-Hz auditory steady-state responses. Hear Res 186:57–68PubMedCrossRefPubMedCentralGoogle Scholar
- Ross B, Picton TW, Herdman AT, Pantev C (2004) The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004:22PubMedPubMedCentralGoogle Scholar
- Ross B, Herdman AT, Pantev C (2005a) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039PubMedCrossRefPubMedCentralGoogle Scholar
- Ross B, Herdman AT, Pantev C (2005b) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94:4082–4093PubMedCrossRefPubMedCentralGoogle Scholar
- Rupp A, Hack S, Gutschalk A, Schneider P, Picton TW, Stippich C, Scherg M (2000) Fast temporal interactions in human auditory cortex. Neuroreport 11:3731–3736PubMedCrossRefPubMedCentralGoogle Scholar
- Rupp A, Gutschalk A, Hack S, Scherg M (2002a) Temporal resolution of the human primary auditory cortex in gap detection. Neuroreport 13:2203–2207PubMedCrossRefPubMedCentralGoogle Scholar
- Rupp A, Uppenkamp S, Gutschalk A, Beucker R, Patterson RD, Dau T, Scherg M (2002b) The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1). Hear Res 174:19–31PubMedCrossRefPubMedCentralGoogle Scholar
- Rupp A, Gutschalk A, Uppenkamp S, Scherg M (2004) Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners. J Neurophysiol 92:2239–2247PubMedCrossRefPubMedCentralGoogle Scholar
- Salminen NH, May PJ, Alku P, Tiitinen H (2009) A population rate code of auditory space in the human cortex. PLoS One 4:e7600PubMedPubMedCentralCrossRefGoogle Scholar
- Sams M, Hämäläinen M, Hari R, McEvoy L (1993a) Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound. Hear Res 67:89–97PubMedCrossRefPubMedCentralGoogle Scholar
- Sams M, Hari R, Rif J, Knuutila J (1993b) The human auditory sensory memory trace persists about 10 s: neuromagnetic evidence. J Cogn Neurosci 5:363–370PubMedCrossRefPubMedCentralGoogle Scholar
- Sanders RD, Winston JS, Barnes GR, Rees G (2018) Magnetoencephalographic correlates of perceptual state during auditory bistability. Sci Rep 8:976PubMedPubMedCentralCrossRefGoogle Scholar
- Saupe K, Schröger E, Andersen SK, Müller MM (2009) Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Front Hum Neurosci 3:58PubMedPubMedCentralCrossRefGoogle Scholar
- Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873PubMedCrossRefPubMedCentralGoogle Scholar
- Scherg M, von Cramon D (1985) A new interpretation of the generators of BAEP waves I-V: results of a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62:290–299PubMedCrossRefPubMedCentralGoogle Scholar
- Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65:344–360PubMedCrossRefPubMedCentralGoogle Scholar
- Scherg M, Hari R, Hämäläinen MS (1989) Frequency-specific sources of the auditory N19-P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials. In: Williamson SJ, Hoke M, Sroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New YorkGoogle Scholar
- Schnupp JW, Nelken I, King AJ (2011) Auditory neuroscience: making sense of sound. MIT Press, Cambridge, MAGoogle Scholar
- Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol 97:2075–2082PubMedCrossRefPubMedCentralGoogle Scholar
- Sedley W, Teki S, Kumar S, Overath T, Barnes GR, Griffiths TD (2012) Gamma band pitch responses in human auditory cortex measured with magnetoencephalography. NeuroImage 59:1904–1911PubMedPubMedCentralCrossRefGoogle Scholar
- Shaw ME, Hämäläinen MS, Gutschalk A (2013) How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. NeuroImage 74:22–29PubMedCrossRefPubMedCentralGoogle Scholar
- Sieroka N, Dosch HG, Specht HJ, Rupp A (2003) Additional neuromagnetic source activity outside the auditory cortex in duration discrimination correlates with behavioural ability. NeuroImage 20:1697–1703PubMedCrossRefPubMedCentralGoogle Scholar
- Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13PubMedCrossRefPubMedCentralGoogle Scholar
- Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132:1953–1966PubMedCrossRefPubMedCentralGoogle Scholar
- Starzynski C, Gutschalk A (2018) Context-dependent role of selective attention for change detection in multi-speaker scenes. Hum Brain Mapp 39:4623–4632PubMedCrossRefPubMedCentralGoogle Scholar
- Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78PubMedPubMedCentralCrossRefGoogle Scholar
- Steinmann I, Gutschalk A (2011) Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain. NeuroImage 54:495–504PubMedCrossRefPubMedCentralGoogle Scholar
- Steinmann I, Gutschalk A (2012) Sustained BOLD and theta activity in auditory cortex are related to slow stimulus fluctuations rather than to pitch. J Neurophysiol 107:3458–3467PubMedCrossRefPubMedCentralGoogle Scholar
- Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG Jr (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol 84:196–200PubMedCrossRefPubMedCentralGoogle Scholar
- Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal Analysis of Evoked and Induced Electroencephalographic Responses in Primary Auditory Cortex (A1) of the Awake Monkey. Cereb Cortex 18:610–625PubMedCrossRefPubMedCentralGoogle Scholar
- Stevens KN (2000) Acoustic phonetics. MIT Press, Cambridge, MAGoogle Scholar
- Todorovic A, van Ede F, Maris E, de Lange FP (2011) Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci 31:9118–9123PubMedPubMedCentralCrossRefGoogle Scholar
- Uppenkamp S, Johnsrude IS, Norris D, Marslen-Wilson W, Patterson RD (2006) Locating the initial stages of speech-sound processing in human temporal cortex. NeuroImage 31:1284–1296PubMedCrossRefPubMedCentralGoogle Scholar
- Van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. University of Technology, EindhovenGoogle Scholar
- Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678PubMedPubMedCentralCrossRefGoogle Scholar
- Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107:2033–2041PubMedCrossRefPubMedCentralGoogle Scholar
- Weisz N, Lecaignard F, Müller N, Bertrand O (2012) The modulatory influence of a predictive cue on the auditory steady-state response. Hum Brain Mapp 33:1417–1430PubMedCrossRefPubMedCentralGoogle Scholar
- Wiegand K, Gutschalk A (2012) Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. NeuroImage 61:62–69PubMedCrossRefPubMedCentralGoogle Scholar
- Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A 90:8722–8726PubMedPubMedCentralCrossRefGoogle Scholar
- Yost WA, Patterson R, Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078PubMedCrossRefPubMedCentralGoogle Scholar
- Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403PubMedCrossRefPubMedCentralGoogle Scholar
- Yrttiaho S, Alku P, May PJ, Tiitinen H (2009) Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex. J Acoust Soc Am 125:3177–3185PubMedCrossRefPubMedCentralGoogle Scholar
- Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423PubMedCrossRefPubMedCentralGoogle Scholar