MEG Auditory Research

  • Alexander GutschalkEmail author
Reference work entry


This chapter reviews auditory research performed with magnetoencephalography (MEG) in normal listeners, with an emphasis on the auditory cortex. The first section provides an overview of basic characteristics of auditory-evoked fields and their classification. The second section reviews the relationship between a selection of basic auditory features – including lateralization, periodicity, and spectral content – and auditory-evoked fields generated in the auditory cortex. The final section highlights recent MEG research in the field of auditory scene analysis, focusing specifically on auditory stream segregation, selective attention, and informational masking.


Auditory cortex Auditory-evoked fields Selective adaptation Pitch Sound lateralization Vowel Auditory scene analysis Stream segregation Selective attention Informational masking Perceptual awareness 



This work was supported by Bundesministerium für Bildung and Forschung (BMBF, grant 01EV 0712) and by Deutsche Forschungsgemeinschaft (DFG, grant GU 593/5-1).


  1. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc Natl Acad Sci U S A 98:13367–13372PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103:14608–14613PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahveninen J, Hämäläinen M, Jääskeläinen IP, Ahlfors SP, Huang S, Lin FH, Raij T, Sams M, Vasios CE, Belliveau JW (2011) Attention – driven auditory cortex short—term plasticity helps segregate relevant sounds from noise. Proc Natl Acad Sci U S A 108:4182–4187PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahveninen J, Seidman LJ, Chang WT, Hämäläinen MS, Huang S (2017) Suppression of irrelevant sounds during auditory working memory. NeuroImage 161:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aiken SJ, Picton TW (2008) Human cortical responses to the speech envelope. Ear Hear 29:139–157PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anurova I, Artchakov D, Korvenoja A, Ilmoniemi RJ, Aronen HJ, Carlson S (2005) Cortical generators of slow evoked responses elicited by spatial and nonspatial auditory working memory tasks. Clin Neurophysiol 116:1644–1654PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barascud N, Pearce M, Griffiths T, Friston K, Chait M (2015) MEG responses in humans reveal ideal-observer-like sensitivity to complex acoustic patterns. Proc Natl Acad Sci U S A 113:E616–E625CrossRefGoogle Scholar
  8. Barker D, Plack CJ, Hall DA (2012) Reexamining the evidence for a pitch-sensitive region: a human fMRI study using iterated ripple noise. Cereb Cortex 22:745–753PubMedCrossRefPubMedCentralGoogle Scholar
  9. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403(6767):309–312. Scholar
  10. Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O (2007) Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. J Neurosci 27:9252–9261PubMedPubMedCentralCrossRefGoogle Scholar
  11. Biermann S, Heil P (2000) Parallels between timing of onset responses of single neurons in cat and of evoked magnetic fields in human auditory cortex. J Neurophysiol 84:2426–2439PubMedCrossRefPubMedCentralGoogle Scholar
  12. Billig AJ, Davis MH, Carlyon RP (2018) Neural decoding of bistable sounds reveals an effect of intention on perceptual organization. bioRxiv.
  13. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528PubMedCrossRefPubMedCentralGoogle Scholar
  14. Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge, MAGoogle Scholar
  15. Braak H (1978) The pigment architecture of the human temporal lobe. Anat embryol (Berlin) 154:213–240CrossRefGoogle Scholar
  16. Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge, MACrossRefGoogle Scholar
  17. Brodbeck C, Hong LE, Simon JZ (2018) Rapid transformation from auditory to linguistic representations of continuous speech. Curr Biol 24:3976–3983CrossRefGoogle Scholar
  18. Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 34:1454–1465CrossRefGoogle Scholar
  19. Brugge JF, Nourski KV, Oya H, Reale RA, Kawasaki H, Steinschneider M, Howard MA 3rd (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374PubMedPubMedCentralCrossRefGoogle Scholar
  20. Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am 44:945–950PubMedCrossRefPubMedCentralGoogle Scholar
  21. Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225PubMedPubMedCentralCrossRefGoogle Scholar
  22. Capilla A, Belin P, Gross J (2013) The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG. Cereb Cortex 23:1388–1395PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carl D, Gutschalk A (2013) Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences. Exp Brain Res 224:557–570PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carver FW, Fuchs A, Jantzen KJ, Kelso JA (2002) Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clin Neurophysiol 113:1921–1931PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chait M, Poeppel D, Simon JZ (2006) Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cereb Cortex 16:835–848PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chait M, Poeppel D, de Cheveigne A, Simon JZ (2007) Processing asymmetry of transitions between order and disorder in human auditory cortex. J Neurosci 27:5207–5214PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chakalov I, Draganova R, Wollbrink A, Preissl H, Pantev C (2012) Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magneto encephalographic study. BMC Neurosci 13:72PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cherry C (1953) Some experiments on the recognition of speech, with one and two ears. J Acoust Soc Am 25:975–981CrossRefGoogle Scholar
  29. Chiappa KH, Hill RA (1997) Brain stem auditory evoked potentials: interpretation. In: Chiappa KH (ed) Evoked potentials in clinical medicine. Raven Press, New York, pp 199–268Google Scholar
  30. Coffey EBJ, Herholz SC, Chepesiuk AMP, Baillet S, Zatorre RJ (2016) Cortical contributions to the auditory frequency-following response revealed by MEG. Nat Commun 7:1–11CrossRefGoogle Scholar
  31. Crone NE, Boatman D, Gordon B, Hao L (2001) Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 112:565–582PubMedCrossRefPubMedCentralGoogle Scholar
  32. Crosse MJ, Di Liberto GM, Bednar A, Lalor EC (2016) The multivariate temporal response function (mTRF) toolbox: a matlab toolbox for relating neural signals to continuous stimuli. Front Hum Neurosci 10:604PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530–1540PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–227PubMedPubMedCentralCrossRefGoogle Scholar
  35. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222CrossRefGoogle Scholar
  36. Di Liberto GM, O’Sullivan JA, Lalor EC (2015) Low-frequency cortical entrainment to speech reflects phoneme-level processing. Curr Biol 25:2457–2465PubMedCrossRefPubMedCentralGoogle Scholar
  37. Diesch E, Luce T (2000) Topographic and temporal indices of vowel spectral envelope extraction in the human auditory cortex. J Cogn Neurosci 12:878–893PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ding N, Simon JZ (2012a) Emergence of neural encoding of auditory objects while listening to competing speakers. Proc Natl Acad Sci U S A 109:11854–11859PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ding N, Simon JZ (2012b) Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J Neurophysiol 107:78–89PubMedCrossRefPubMedCentralGoogle Scholar
  40. Durlach NI, Mason CR, Kidd G Jr, Arbogast TL, Colburn HS, Shinn-Cunningham BG (2003) Note on informational masking. J Acoust Soc Am 113:2984–2987PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dykstra AR, Gutschalk A (2015) Does the mismatch negativity operate on a consciously accessible memory trace? Sci Adv 1:e1500677PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dykstra AR, Halgren E, Thesen T, Carlson CE, Doyle W, Madsen JR, Eskandar EN, Cash SS (2011) Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Front Hum Neurosci 5:74PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dykstra AR, Burchard D, Starzynski C, Riedel H, Rupp A, Gutschalk A (2016) Lateralization and binaural interaction of middle-latency and late-brainstem components of the auditory evoked response. J Assoc Res Otolaryngol 17:357–370PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dykstra AR, Cariani P, Gutschalk A (2017) A roadmap for conscious audition and its neural underpinnings. Philos Trans R Soc Lond B Biol Sci 372:20160103Google Scholar
  45. Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280PubMedCrossRefPubMedCentralGoogle Scholar
  46. Elhilali M, Xiang J, Shamma SA, Simon JZ (2009) Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biol 7:e1000129PubMedPubMedCentralCrossRefGoogle Scholar
  47. Erné SN, Scheer HJ, Hoke M, Pantev C, Lütkenhöner B (1987) Brainstem auditory evoked magnetic fields in response to stimulation with brief tone pulses. Int J Neurosci 37:115–125PubMedCrossRefPubMedCentralGoogle Scholar
  48. Eulitz C, Diesch E, Pantev C, Hampson S, Elbert T (1995) Magnetic and electric brain activity evoked by the processing of tone and vowel stimuli. J Neurosci 15:2748–2755PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758PubMedPubMedCentralCrossRefGoogle Scholar
  50. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMedCrossRefPubMedCentralGoogle Scholar
  51. Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610PubMedCrossRefPubMedCentralGoogle Scholar
  52. Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 78:2643–2647PubMedPubMedCentralCrossRefGoogle Scholar
  53. Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463PubMedPubMedCentralCrossRefGoogle Scholar
  54. Giani AS, Belardinelli P, Ortiz E, Kleiner M, Noppeney U (2015) Detecting tones in complex auditory scenes. NeuroImage 122:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gutschalk A, Uppenkamp S (2011) Sustained responses for pitch and vowels map to similar sites in human auditory cortex. NeuroImage 56:1578–1587PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gutschalk A, Scherg M, Picton TW, Mase R, Roth R, Ille N, Klenk A, Hähnel S (1998) Multiple source components of middle and late latency auditory evoked fields. In: Kakigi R, Hashimoto I (eds) Recent advances in human neurophysiology. Elsevier, Amsterdam, pp 270–278Google Scholar
  57. Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hähnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2004a) Temporal dynamics of pitch in human auditory cortex. NeuroImage 22:755–766PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gutschalk A, Patterson RD, Uppenkamp S, Scherg M, Rupp A (2004b) Recovery and refractoriness of auditory evoked fields after gaps in click trains. Eur J Neurosci 20:3141–3147PubMedCrossRefPubMedCentralGoogle Scholar
  61. Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gutschalk A, Oxenham AJ, Micheyl C, Wilson EC, Melcher JR (2007a) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074–13081PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, Rupp A (2007b) The effect of temporal context on the sustained pitch response in human auditory cortex. Cereb Cortex 17:552–561PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gutschalk A, Micheyl C, Oxenham AJ (2008) Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol 6:e138PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gutschalk A, Oldermann K, Rupp A (2009) Rate perception and the auditory 40-Hz steady-state fields evoked by two-tone sequences. Hear Res 257:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  66. Gutschalk A, Hämäläinen MS, Melcher JR (2010) BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. J Neurophysiol 103:2015–2026PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gutschalk A, Brandt T, Bartsch A, Jansen C (2012) Comparison of auditory deficits associated with neglect and auditory cortex lesions. Neuropsychologia 50:926–938PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gutschalk A, Uppenkamp S, Riedel B, Bartsch A, Brandt T, Vogt-Schaden M (2015) Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus. Cortex 73:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222PubMedCrossRefPubMedCentralGoogle Scholar
  70. Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  71. Halgren E, Sherfey J, Irimia A, Dale AM, Marinkovic K (2011) Sequential temporo-fronto-temporal activation during monitoring of the auditory environment for temporal patterns. Hum Brain Mapp 32:1260–1276PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol 49:277–290PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res 40:237–240PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hari R, Pelizzone M, Mäkelä JP, Hallstrom J, Leinonen L, Lounasmaa OV (1987) Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts. Audiology 26:31–43PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86:1033–1039PubMedCrossRefPubMedCentralGoogle Scholar
  77. Hashimoto I (1982) Auditory evoked potentials from the human midbrain: slow brain stem responses. Electroencephalogr Clin Neurophysiol 53:652–657PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hashimoto I, Mashiko T, Yoshikawa K, Mizuta T, Imada T, Hayashi M (1995) Neuromagnetic measurements of the human primary auditory response. Electroencephalogr Clin Neurophysiol 96:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hertrich I, Dietrich S, Trouvain J, Moos A, Ackermann H (2012) Magnetic brain activity phase-locked to the envelope, the syllable onsets, and the fundamental frequency of a perceived speech signal. Psychophysiology 49:322–334PubMedCrossRefPubMedCentralGoogle Scholar
  80. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180PubMedCrossRefPubMedCentralGoogle Scholar
  81. Imada T, Hari R, Loveless N, McEvoy L, Sams M (1993) Determinants of the auditory mismatch response. Electroencephalogr Clin Neurophysiol 87:144–153PubMedCrossRefPubMedCentralGoogle Scholar
  82. Imada T, Watanabe M, Mashiko T, Kawakatsu M, Kotani M (1997) The silent period between sounds has a stronger effect than the interstimulus interval on auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 102:37–45PubMedCrossRefPubMedCentralGoogle Scholar
  83. Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci U S A 101:6809–6814PubMedPubMedCentralCrossRefGoogle Scholar
  84. John MS, Lins OG, Boucher BL, Picton TW (1998) Multiple auditory steady-state responses (MASTER): stimulus and recording parameters. Audiology 37:59–82PubMedCrossRefPubMedCentralGoogle Scholar
  85. Joutsiniemi SL, Hari R, Vilkman V (1989) Cerebral magnetic responses to noise bursts and pauses of different durations. Audiology 28:325–333PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kahlbrock N, Butz M, May ES, Schnitzler A (2012) Sustained gamma band synchronization in early visual areas reflects the level of selective attention. NeuroImage 59:673–681PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kaiser J, Lutzenberger W, Preissl H, Ackermann H, Birbaumer N (2000) Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci 20:6631–6639PubMedPubMedCentralCrossRefGoogle Scholar
  88. Königs L, Gutschalk A (2012) Functional lateralization in auditory cortex under informational masking and in silence. Eur J Neurosci 36:3283–3290PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kretzschmar B, Gutschalk A (2010) A sustained deviance response evoked by the auditory oddball paradigm. Clin Neurophysiol 121:524–532PubMedCrossRefPubMedCentralGoogle Scholar
  90. Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, Lütkenhoner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cereb Cortex 13:765–772PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lakatos P, Barczak A, Neymotin SA, Mcginnis T, Ross S, Javitt DC, Connell MNO (2016) Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci 19:1707–1717PubMedPubMedCentralCrossRefGoogle Scholar
  92. Larson E, Lee AK (2012) The cortical dynamics underlying effective switching of auditory spatial attention. NeuroImage 64:365–370PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lavie N (2006) The role of perceptual load in visual awareness. Brain Res 1080:91–100PubMedCrossRefPubMedCentralGoogle Scholar
  94. Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114(Pt 1A):139–151PubMedPubMedCentralGoogle Scholar
  95. Liegeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92:204–214PubMedCrossRefPubMedCentralGoogle Scholar
  96. Linden DE (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576PubMedCrossRefPubMedCentralGoogle Scholar
  97. Loveless N, Levanen S, Jousmaki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lü ZL, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res 572:236–241PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lütkenhöner B, Steinstrater O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootology 3:191–213CrossRefGoogle Scholar
  100. Lütkenhöner B, Lammertmann C, Ross B, Pantev C (2000) Brain stem auditory evoked fields in response to clicks. Neuroreport 11:913–918PubMedCrossRefPubMedCentralGoogle Scholar
  101. Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694PubMedCrossRefGoogle Scholar
  102. Mäkelä JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66:539–546PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mäkelä JP, Hari R, Leinonen L (1988) Magnetic responses of the human auditory cortex to noise/square wave transitions. Electroencephalogr Clin Neurophysiol 69:423–430PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mäkelä JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama JP (1993) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1:48–56CrossRefGoogle Scholar
  105. Mäkelä JP, Hämäläinen M, Hari R, McEvoy L (1994) Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 92:414–421PubMedCrossRefPubMedCentralGoogle Scholar
  106. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122PubMedCrossRefPubMedCentralGoogle Scholar
  107. May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Näätänen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99–120PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mazaheri A, Van Schouwenburg MR, Dimitrijevic A, Denys D, Cools R, Jensen O (2014) Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage 87:356–362PubMedCrossRefPubMedCentralGoogle Scholar
  109. McEvoy L, Hari R, Imada T, Sams M (1993) Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. Hear Res 67:98–109PubMedCrossRefPubMedCentralGoogle Scholar
  110. McEvoy L, Mäkelä JP, Hämäläinen M, Hari R (1994) Effect of interaural time differences on middle-latency and late auditory evoked magnetic fields. Hear Res 78:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  111. McEvoy L, Levanen S, Loveless N (1997) Temporal characteristics of auditory sensory memory: neuromagnetic evidence. Psychophysiology 34:308–316PubMedCrossRefPubMedCentralGoogle Scholar
  112. Meyer K (2011) Primary sensory cortices, top-down projections and conscious experience. Prog Neurobiol 94:408–417PubMedCrossRefPubMedCentralGoogle Scholar
  113. Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638CrossRefGoogle Scholar
  114. Millman RE, Prendergast G, Hymers M, Green GG (2013) Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical “depth” electrode recordings be replicated using non-invasive MEG “virtual electrodes”? NeuroImage 64:185–196PubMedCrossRefPubMedCentralGoogle Scholar
  115. Moore BCJ (2012) An introduction to the psychology of hearing. Emerald, BingleyGoogle Scholar
  116. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701PubMedCrossRefPubMedCentralGoogle Scholar
  117. Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat embryol (Berlin) 210:401–406CrossRefGoogle Scholar
  118. Müller N, Weisz N (2012) Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. Cereb Cortex 22:1604–1613PubMedCrossRefPubMedCentralGoogle Scholar
  119. Näätänen R (1982) Processing negativity: an evoked-potential reflection of selective attention. Psychol Bull 92:605–640PubMedCrossRefPubMedCentralGoogle Scholar
  120. Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425PubMedCrossRefGoogle Scholar
  121. Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica (Amsterdam) 42:313–329CrossRefGoogle Scholar
  122. Näätänen R, Sams M, Alho K, Paavilainen P, Reinikainen K, Sokolov EN (1988) Frequency and location specificity of the human vertex N1 wave. Electroencephalogr Clin Neurophysiol 69:523–531PubMedCrossRefPubMedCentralGoogle Scholar
  123. Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22PubMedCrossRefGoogle Scholar
  124. Nourski KV, Brugge JF, Reale RA, Kovach CK, Oya H, Kawasaki H, Jenison RL, Howard MA 3rd (2013) Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. J Neurophysiol 109:1283–1295PubMedCrossRefPubMedCentralGoogle Scholar
  125. Obleser J, Lahiri A, Eulitz C (2004) Magnetic brain response mirrors extraction of phonological features from spoken vowels. J Cogn Neurosci 16:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  126. Obleser J, Scott SK, Eulitz C (2006) Now you hear it, now you don’t: transient traces of consonants and their nonspeech analogues in the human brain. Cereb Cortex 16:1069–1076PubMedCrossRefPubMedCentralGoogle Scholar
  127. Obleser J, Wostmann M, Hellbernd N, Wilsch A, Maess B (2012) Adverse listening conditions and memory load drive a common alpha oscillatory network. J Neurosci 32:12376–12383PubMedPubMedCentralCrossRefGoogle Scholar
  128. Okamoto H, Stracke H, Ross B, Kakigi R, Pantev C (2007a) Left hemispheric dominance during auditory processing in noisy environment. BMC Biol 5:52PubMedPubMedCentralCrossRefGoogle Scholar
  129. Okamoto H, Stracke H, Wolters CH, Schmael F, Pantev C (2007b) Attention improves population-level frequency tuning in human auditory cortex. J Neurosci 27:10383–10390PubMedPubMedCentralCrossRefGoogle Scholar
  130. Okamoto H, Stracke H, Bermudez P, Pantev C (2011) Sound processing hierarchy within human auditory cortex. J Cogn Neurosci 23:1855–1863PubMedCrossRefPubMedCentralGoogle Scholar
  131. Palomaki KJ, Tiitinen H, Mäkinen V, May PJ, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Cogn Brain Res 24:364–379CrossRefGoogle Scholar
  132. Pantev C (1995) Evoked and induced gamma-band activity of the human cortex. Brain Topogr 7:321–330PubMedCrossRefPubMedCentralGoogle Scholar
  133. Pantev C, Lütkenhöner B, Hoke M, Lehnertz K (1986) Comparison between simultaneously recorded auditory-evoked magnetic fields and potentials elicited by ipsilateral, contralateral and binaural tone burst stimulation. Audiology 25:54–61PubMedCrossRefGoogle Scholar
  134. Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69:160–170PubMedCrossRefPubMedCentralGoogle Scholar
  135. Pantev C, Elbert T, Makeig S, Hampson S, Eulitz C, Hoke M (1993) Relationship of transient and steady-state auditory evoked fields. Electroencephalogr Clin Neurophysiol 88:389–396PubMedCrossRefPubMedCentralGoogle Scholar
  136. Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  137. Pantev C, Eulitz C, Hampson S, Ross B, Roberts LE (1996a) The auditory evoked “off” response: sources and comparison with the “on” and the “sustained” responses. Ear Hear 17:255–265PubMedCrossRefPubMedCentralGoogle Scholar
  138. Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996b) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74PubMedCrossRefPubMedCentralGoogle Scholar
  139. Pantev C, Okamoto H, Ross B, Stoll W, Ciurlia-Guy E, Kakigi R, Kubo T (2004) Lateral inhibition and habituation of the human auditory cortex. Eur J Neurosci 19:2337–2344PubMedCrossRefPubMedCentralGoogle Scholar
  140. Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782PubMedCrossRefPubMedCentralGoogle Scholar
  141. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776PubMedCrossRefPubMedCentralGoogle Scholar
  142. Pelizzone M, Hari R, Mäkelä JP, Huttunen J, Ahlfors S, Hämäläinen M (1987) Cortical origin of middle-latency auditory evoked responses in man. Neurosci Lett 82:303–307PubMedCrossRefPubMedCentralGoogle Scholar
  143. Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190PubMedCrossRefPubMedCentralGoogle Scholar
  144. Poghosyan V, Ioannides AA (2008) Attention modulates earliest responses in the primary auditory and visual cortices. Neuron 58:802–813PubMedCrossRefPubMedCentralGoogle Scholar
  145. Prendergast G, Johnson SR, Green GG (2010) Temporal dynamics of sinusoidal and non-sinusoidal amplitude modulation. Eur J Neurosci 32:1599–1607PubMedCrossRefPubMedCentralGoogle Scholar
  146. Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9:e1000610PubMedPubMedCentralCrossRefGoogle Scholar
  147. Reite M, Edrich J, Zimmermann JT, Zimmerman JE (1978) Human magnetic auditory evoked fields. Electroencephalogr Clin Neurophysiol 45:114–117PubMedCrossRefPubMedCentralGoogle Scholar
  148. Reite M, Zimmerman JT, Zimmerman JE (1981) Magnetic auditory evoked fields: interhemispheric asymmetry. Electroencephalogr Clin Neurophysiol 51:388–392PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rif J, Hari R, Hämäläinen MS, Sams M (1991) Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr Clin Neurophysiol 79:464–472PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ritter S, Dosch HG, Specht HJ, Rupp A (2005) Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. NeuroImage 27:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  151. Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304PubMedCrossRefPubMedCentralGoogle Scholar
  152. Roberts TP, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. Neuroreport 7:1138–1140PubMedCrossRefPubMedCentralGoogle Scholar
  153. Rogers RL, Baumann SB, Papanicolaou AC, Bourbon TW, Alagarsamy S, Eisenberg HM (1991) Localization of the P3 sources using magnetoencephalography and magnetic resonance imaging. Electroencephalogr Clin Neurophysiol 79:308–321PubMedCrossRefPubMedCentralGoogle Scholar
  154. Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340PubMedCrossRefPubMedCentralGoogle Scholar
  155. Ross B, Picton TW, Pantev C (2002) Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field. Hear Res 165:68–84PubMedCrossRefPubMedCentralGoogle Scholar
  156. Ross B, Draganova R, Picton TW, Pantev C (2003) Frequency specificity of 40-Hz auditory steady-state responses. Hear Res 186:57–68PubMedCrossRefPubMedCentralGoogle Scholar
  157. Ross B, Picton TW, Herdman AT, Pantev C (2004) The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004:22PubMedPubMedCentralGoogle Scholar
  158. Ross B, Herdman AT, Pantev C (2005a) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039PubMedCrossRefPubMedCentralGoogle Scholar
  159. Ross B, Herdman AT, Pantev C (2005b) Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. J Neurophysiol 94:4082–4093PubMedCrossRefPubMedCentralGoogle Scholar
  160. Rupp A, Hack S, Gutschalk A, Schneider P, Picton TW, Stippich C, Scherg M (2000) Fast temporal interactions in human auditory cortex. Neuroreport 11:3731–3736PubMedCrossRefPubMedCentralGoogle Scholar
  161. Rupp A, Gutschalk A, Hack S, Scherg M (2002a) Temporal resolution of the human primary auditory cortex in gap detection. Neuroreport 13:2203–2207PubMedCrossRefPubMedCentralGoogle Scholar
  162. Rupp A, Uppenkamp S, Gutschalk A, Beucker R, Patterson RD, Dau T, Scherg M (2002b) The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans(1). Hear Res 174:19–31PubMedCrossRefPubMedCentralGoogle Scholar
  163. Rupp A, Gutschalk A, Uppenkamp S, Scherg M (2004) Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners. J Neurophysiol 92:2239–2247PubMedCrossRefPubMedCentralGoogle Scholar
  164. Salminen NH, May PJ, Alku P, Tiitinen H (2009) A population rate code of auditory space in the human cortex. PLoS One 4:e7600PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sams M, Hämäläinen M, Hari R, McEvoy L (1993a) Human auditory cortical mechanisms of sound lateralization: I. Interaural time differences within sound. Hear Res 67:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  166. Sams M, Hari R, Rif J, Knuutila J (1993b) The human auditory sensory memory trace persists about 10 s: neuromagnetic evidence. J Cogn Neurosci 5:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  167. Sanders RD, Winston JS, Barnes GR, Rees G (2018) Magnetoencephalographic correlates of perceptual state during auditory bistability. Sci Rep 8:976PubMedPubMedCentralCrossRefGoogle Scholar
  168. Saupe K, Schröger E, Andersen SK, Müller MM (2009) Neural mechanisms of intermodal sustained selective attention with concurrently presented auditory and visual stimuli. Front Hum Neurosci 3:58PubMedPubMedCentralCrossRefGoogle Scholar
  169. Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex 20:2863–2873PubMedCrossRefPubMedCentralGoogle Scholar
  170. Scherg M, von Cramon D (1985) A new interpretation of the generators of BAEP waves I-V: results of a spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol 62:290–299PubMedCrossRefPubMedCentralGoogle Scholar
  171. Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroencephalogr Clin Neurophysiol 65:344–360PubMedCrossRefPubMedCentralGoogle Scholar
  172. Scherg M, Hari R, Hämäläinen MS (1989) Frequency-specific sources of the auditory N19-P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials. In: Williamson SJ, Hoke M, Sroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New YorkGoogle Scholar
  173. Schnupp JW, Nelken I, King AJ (2011) Auditory neuroscience: making sense of sound. MIT Press, Cambridge, MAGoogle Scholar
  174. Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol 97:2075–2082PubMedCrossRefPubMedCentralGoogle Scholar
  175. Sedley W, Teki S, Kumar S, Overath T, Barnes GR, Griffiths TD (2012) Gamma band pitch responses in human auditory cortex measured with magnetoencephalography. NeuroImage 59:1904–1911PubMedPubMedCentralCrossRefGoogle Scholar
  176. Shaw ME, Hämäläinen MS, Gutschalk A (2013) How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. NeuroImage 74:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  177. Sieroka N, Dosch HG, Specht HJ, Rupp A (2003) Additional neuromagnetic source activity outside the auditory cortex in duration discrimination correlates with behavioural ability. NeuroImage 20:1697–1703PubMedCrossRefPubMedCentralGoogle Scholar
  178. Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  179. Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132:1953–1966PubMedCrossRefPubMedCentralGoogle Scholar
  180. Starzynski C, Gutschalk A (2018) Context-dependent role of selective attention for change detection in multi-speaker scenes. Hum Brain Mapp 39:4623–4632PubMedCrossRefPubMedCentralGoogle Scholar
  181. Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78PubMedPubMedCentralCrossRefGoogle Scholar
  182. Steinmann I, Gutschalk A (2011) Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain. NeuroImage 54:495–504PubMedCrossRefPubMedCentralGoogle Scholar
  183. Steinmann I, Gutschalk A (2012) Sustained BOLD and theta activity in auditory cortex are related to slow stimulus fluctuations rather than to pitch. J Neurophysiol 107:3458–3467PubMedCrossRefPubMedCentralGoogle Scholar
  184. Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG Jr (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroencephalogr Clin Neurophysiol 84:196–200PubMedCrossRefPubMedCentralGoogle Scholar
  185. Steinschneider M, Fishman YI, Arezzo JC (2008) Spectrotemporal Analysis of Evoked and Induced Electroencephalographic Responses in Primary Auditory Cortex (A1) of the Awake Monkey. Cereb Cortex 18:610–625PubMedCrossRefPubMedCentralGoogle Scholar
  186. Stevens KN (2000) Acoustic phonetics. MIT Press, Cambridge, MAGoogle Scholar
  187. Todorovic A, van Ede F, Maris E, de Lange FP (2011) Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. J Neurosci 31:9118–9123PubMedPubMedCentralCrossRefGoogle Scholar
  188. Uppenkamp S, Johnsrude IS, Norris D, Marslen-Wilson W, Patterson RD (2006) Locating the initial stages of speech-sound processing in human temporal cortex. NeuroImage 31:1284–1296PubMedCrossRefPubMedCentralGoogle Scholar
  189. Van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. University of Technology, EindhovenGoogle Scholar
  190. Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wang Y, Ding N, Ahmar N, Xiang J, Poeppel D, Simon JZ (2012) Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J Neurophysiol 107:2033–2041PubMedCrossRefPubMedCentralGoogle Scholar
  192. Weisz N, Lecaignard F, Müller N, Bertrand O (2012) The modulatory influence of a predictive cue on the auditory steady-state response. Hum Brain Mapp 33:1417–1430PubMedCrossRefPubMedCentralGoogle Scholar
  193. Wiegand K, Gutschalk A (2012) Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. NeuroImage 61:62–69PubMedCrossRefPubMedCentralGoogle Scholar
  194. Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A 90:8722–8726PubMedPubMedCentralCrossRefGoogle Scholar
  195. Yost WA, Patterson R, Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078PubMedCrossRefPubMedCentralGoogle Scholar
  196. Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403PubMedCrossRefPubMedCentralGoogle Scholar
  197. Yrttiaho S, Alku P, May PJ, Tiitinen H (2009) Representation of the vocal roughness of aperiodic speech sounds in the auditory cortex. J Acoust Soc Am 125:3177–3185PubMedCrossRefPubMedCentralGoogle Scholar
  198. Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of HeidelbergHeidelbergGermany

Section editors and affiliations

  • Catherine Tallon-Baudry

There are no affiliations available

Personalised recommendations