Advertisement

Towards the Understanding of Healthy and Pathological Aging Through MEG

  • Fernando MaestúEmail author
  • Elena Solesio-Jofre
  • Ricardo Bajo
Reference work entry

Abstract

The study of healthy and pathological aging with magnetoencephalography (MEG) has become more widespread in recent years. This is mainly because it is providing a new perspective in the study of this disease. Its excellent temporal resolution allows the evaluation of functional networks in the frequency domain. These characteristics make MEG unique for the study of the organization of the neurophysiological mechanisms supporting cognitive capabilities in the aging brain. In this chapter, we will review MEG findings in normal and pathological aging. In normal aging, we will go through the mechanisms of forgetting and the assessment of the default mode network organization. In the field of pathological aging, the literature has mainly focused on Alzheimer’s Disease (AD). These studies assess sensory memory, short-term and long-term memory, indicating decreased activity and connectivity in AD patients but a dual pattern of increased/decreased functional connectivity at early stages such as mild cognitive impairment (MCI) or subjective cognitive decline (SCD). Finally, similar results have been found in an extensive literature using resting state recordings which characterize the brain networks of patients with dementia in a non-task context. All these topics will be discussed in the context of the literature of cognitive neuroscience of aging. Potential new approaches and recommendations for future research will be provided.

Keywords

MEG Aging Mild cognitive impairment Alzheimer’s disease Memory loss Functional connectivity 

References

  1. Aine CJ, Woodruff CC, Knoefel JE, Adair JC, Hudson D, Qualls C, Bockholt J, Best E, Kovacevic S, Cobb W, Padilla D, Hart B, Stephen JM (2006) Aging: compensation or maturation? NeuroImage 32:1891–1904PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montano R, Hayek R, Qualls C, Ranken D, Stephen JM (2010) Different strategies for auditory word recognition in healthy versus normal aging. NeuroImage 49:3319–3330Google Scholar
  3. Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, JMBrain S (2011) Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr 24(3–4):323–339PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson MJ, Riccio DC (2005) Ontogenetic forgetting of stimulus attributes. Learn Behav 33(4):444–453PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ariza P, Solesio-Jofre E, Martínez-Huartos J, Pineda-Pardo JA, Niso G, Maestú F, Buldú JM (2015) Evaluating the effect of ageing on interference resolution with time-varying complex networks analysis. Front Hum Neurosci 9:255.  https://doi.org/10.3389/fnhum.2015.00255CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aurtenetxe S, Castellanos NP, Moratti S, Bajo R, Gil P, Beitia G, Del-Pozo F, Maestú F (2013) Dysfunctional and compensatory duality in mild cognitive impairment during a continuous recognition memory task. Int J Psychophysiol 87(1):95–102PubMedCrossRefPubMedCentralGoogle Scholar
  8. Babiloni C, Cassetta E, Chiovenda P, Del Percio C, Ercolani M, Moretti DV, Moffa F, Pasqualetti P, Pizzella V, Romani GL, Tecchio F, Zappasodi F, Rossini PM (2005) Alpha rhythms in mild dements during visual delayed choice reaction time tasks: a MEG study. Brain Res Bull 65(6):457–470PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bajo R, Maestú F, Nevado A, Sancho M, Gutiérrez R, Campo P, Castellanos NP, Gil P, Moratti S, Pereda E, Del-Pozo F (2010) Functional connectivity in mild cognitive impairment during a memory task: implications for the disconnection hypothesis. J Alzheimer’s Dis 22(1):183–193CrossRefGoogle Scholar
  10. Bajo R, Castellanos NP, López ME, Ruiz JM, Montejo P, Montenegro M, Llanero M, Gil P, Yubero R, Baykova E, Paul N, Aurtenetxe S, Del Pozo F, Maestu F (2012a) Early dysfunction of functional connectivity in healthy elderly with subjective memory complaints. Age (Dordr) 34(2):497–506CrossRefGoogle Scholar
  11. Bajo R, Castellanos NP, Cuesta P, Aurtenetxe S, Garcia-Prieto J, Gil-Gregorio P, del-Pozo F, Maestu F (2012b) Differential patterns of connectivity in progressive mild cognitive impairment. Brain Connect 2(1):21–24PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58:461–465PubMedCrossRefPubMedCentralGoogle Scholar
  13. Berendse HW, Verbunt JP, Scheltens P, van Dijk BW, Jonkman EJ (2000) Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin Neurophysiol 111(4):604–612PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14(6):750–756. Epub 2011 May 1PubMedPubMedCentralCrossRefGoogle Scholar
  15. Besga A, Ortiz L, Fernández A, Maestu F, Arrazola J, Gil-Gregorio P, Fuentes M, Ortiz T (2010) Structural and functional patterns in healthy aging, mild cognitive impairment, and Alzheimer disease. Alzheimer Dis Assoc Disord 24(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  16. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–59 https://www.ncbi.nlm.nih.gov/pubmed/1759558PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brookes MJ (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. NeuroImage 56:1082–1104PubMedPubMedCentralGoogle Scholar
  19. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 108(40):16783–16788PubMedPubMedCentralCrossRefGoogle Scholar
  20. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208PubMedCrossRefPubMedCentralGoogle Scholar
  21. Buldú JM, Bajo R, Maestú F, Castellanos N, Leyva I, Gil P, Sendiña-Nadal I, Almendral JA, Nevado A, del-Pozo F, Boccaletti S (2011) Reorganization of functional networks in mild cognitive impairment. PLoS One 6(5):e19584. Epub 2011 May 23PubMedPubMedCentralCrossRefGoogle Scholar
  22. Busche MA, Konnerth A (2016) Impairments of neural circuit function in Alzheimer’s disease. Philos Trans R Soc 371:20150429.  https://doi.org/10.1098/rstb.2015.0429CrossRefGoogle Scholar
  23. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cabeza R, Grady CL, Nyberg L, McIntosh AR, Tulving E, Kapur S, Jennings JM, Houle S, Craik FI (1997) Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 17(1):391–400PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17(3):1394–1402PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cacciaglia R, Molinuevo JL, Falcón C, Brugulat-Serrat A, Sánchez-Benavides G, Gramunt N, Esteller M, Morán S, Minguillón C, Fauria K, Gispert JD (2018) Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer’s disease. Alzheimer’s Dement 14:902.  https://doi.org/10.1016/j.jalz.2018.01.016. pii: S1552-5260(18)30044-XCrossRefGoogle Scholar
  27. Canuet L, Pusil S, López ME, Bajo R, Pineda-Pardo JÁ, Cuesta P, Gálvez G, Gaztelu JM, Lourido D, García-Ribas G, Maestú F (2015) Network disruption and cerebrospinal fluid amyloid-beta and Phospho-Tau levels in mild cognitive impairment. J Neurosci 35(28):10325–10330PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chao LL, Knight RT (1998) Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci 10(2):167–177PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cheng CH, Wang PN, Hsu WY, Lin YY (2012) Inadequate inhibition of redundant auditory inputs in Alzheimer’s disease: an MEG study. Biol Psychol 89(2):365–373PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holtzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58(1):42–51PubMedPubMedCentralCrossRefGoogle Scholar
  31. Clapp WC, Rubens MT, Gazzaley A (2010) Mechanisms of working memory disruption by external interference. Cereb Cortex 20(4):859–872PubMedCrossRefPubMedCentralGoogle Scholar
  32. Coane JH, Balota DA, Dolan PO, Jacoby LL (2011) Not all sources of familiarity are created equal: the case of word frequency and repetition in episodic recognition. Mem Cogn 39(5):791–805CrossRefGoogle Scholar
  33. Colcombe SJ, Kramer AF, Erickson KI, Scalf P (2005) The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol Aging 20:363–375PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cowan N (2008) What are the differences between long-term, short-term, and working memory? Prog Brain Res 169:323–338PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cuesta P, Garcés P, Castellanos NP, López ME, Aurtenetxe S, Bajo R, Pineda-Pardo JA, Bruña R, Marín AG, Delgado M, Barabash A, Ancín I, Cabranes JA, Fernandez A, Del Pozo F, Sancho M, Marcos A, Nakamura A, Maestú F (2015) Influence of the APOE ε4 allele and mild cognitive impairment diagnosis in the disruption of the MEG resting state functional connectivity in sources space. J Alzheimers Dis 44(2):493–505PubMedCrossRefPubMedCentralGoogle Scholar
  36. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281PubMedCrossRefGoogle Scholar
  37. Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C (2003) Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 126:43–56PubMedCrossRefPubMedCentralGoogle Scholar
  38. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18(5):1201–1209PubMedCrossRefPubMedCentralGoogle Scholar
  39. De Haan W, van der Flier WM, Koene T, Smits LL, Scheltens P, Stam CJ (2012a) Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. NeuroImage 59(4):3085–3093PubMedCrossRefPubMedCentralGoogle Scholar
  40. De Haan W, van der Flier WM, Wang H, Van Mieghem PF, Scheltens P, Stam CJ (2012b) Disruption of functional brain networks in Alzheimer’s disease: what can we learn from graph spectral analysis of resting-state magnetoencephalography? Brain Connect 2(2):45–55PubMedCrossRefPubMedCentralGoogle Scholar
  41. De Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ (2012c) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8(8):e1002582.  https://doi.org/10.1371/journal.pcbi.1002582CrossRefPubMedPubMedCentralGoogle Scholar
  42. De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167:587–594PubMedCrossRefPubMedCentralGoogle Scholar
  43. De Pasquale F (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 107:6040–6045PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dew IT, Buchler N, Dobbins IG, Cabeza R (2012) Where is ELSA? The early to late shift in aging. Cereb Cortex 22(11):2542–2553PubMedCrossRefPubMedCentralGoogle Scholar
  45. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, Bertram L, Mullin K, Tanzi RE, Blacker D, Albert MS, Sperling RA (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404–411PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fernández A, Maestu F, Amo C, Gil P, Fehr T, Wienbruch C et al (2002) Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol Psychiatry 52(7):764–770PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fernández A, Arrazola J, Maestú F, Amo C, Gil-Gregorio P, Wienbruch C, Ortiz T (2003) Correlations of hippocampal atrophy and focal low-frequency magnetic activity in Alzheimer disease: volumetric MR imaging-magnetoencephalographic study. AJNR Am J Neuroradiol 24(3):481–487PubMedPubMedCentralGoogle Scholar
  48. Fernández A, García-Segura JM, Ortiz T, Montoya J, Maestú F, Gil-Gregorio P, Campo P, Viaño J (2005) Proton magnetic resonance spectroscopy and magnetoencephalographic estimation of delta dipole density: a combination of techniques that may contribute to the diagnosis of Alzheimer’s disease. Dement Geriatr Cogn Disord 20(2–3):169–177PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fernández A, Turrero A, Zuluaga P, Gil P, Maestú F, Campo P, Ortiz T (2006) Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. Arch Neurol 63(3):427–430PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172.  https://doi.org/10.1038/nrn3901CrossRefPubMedPubMedCentralGoogle Scholar
  51. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Långström B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):8–9673CrossRefGoogle Scholar
  53. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 103:10046–10051PubMedPubMedCentralCrossRefGoogle Scholar
  54. Franciotti R, Iacono D, Della Penna S, Pizzella V, Torquati K, Onofrj M, Romani GL (2006) Cortical rhythms reactivity in AD, LBD and normal subjects: a quantitative MEG study. Neurobiol Aging 27(8):1100–1109PubMedCrossRefGoogle Scholar
  55. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29PubMedCrossRefGoogle Scholar
  56. Garcia-Marin V, Blazquez-Llorca L, Rodriguez JR, Boluda S, Muntane G, Ferrer I, Defelipe J (2009) Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 3:28PubMedPubMedCentralCrossRefGoogle Scholar
  57. García-Pacios J, Gutierrez R, Solesio-Jofre E, Moratti S, Ruiz-Vargas JM, López-Frutos JM, Lorenzo-López L, Del-Pozo F, Maestú F (2013) Early prefrontal activation as a mechanisms to prevent forgetting in the context of interference. Am J Geriatr Psychiatry 21(6):580–588.  https://doi.org/10.1097/JGP.0b013e31824bdf47CrossRefPubMedGoogle Scholar
  58. Gazzaley A, D’Esposito M (2007) Top-down modulation and normal aging. Ann N Y Acad Sci 1097:67–83PubMedCrossRefGoogle Scholar
  59. Gazzaley A, Cooney JW, Rissman J, D’Esposito M (2005) Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci 8:1298–1300PubMedCrossRefGoogle Scholar
  60. Gazzaley A, Clapp W, Kelley J, McEvoy K, Knight RT, D’Esposito M (2008) Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proc Natl Acad Sci U S A 105(35):13122–13126PubMedPubMedCentralCrossRefGoogle Scholar
  61. Geschwind N (1965) Disconnexion syndromes in animals and man: part I. Brain 88(3):585–644PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF III, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179PubMedPubMedCentralCrossRefGoogle Scholar
  63. Grady CL (2000) Functional brain imaging and age-related changes in cognition. Biol Psychol 54(1–3):259–281PubMedCrossRefPubMedCentralGoogle Scholar
  64. Grady CL (2008) Cognitive neuroscience of aging. Ann N Y Acad Sci 1124:127–144PubMedCrossRefPubMedCentralGoogle Scholar
  65. Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13(7):491–505PubMedPubMedCentralCrossRefGoogle Scholar
  66. Grady CL, McIntosh AR, Horwitz B, Rapoport SI (2000) Age-related changes in the neural correlates of degraded and nondegraded face processing. Cogn Neuropsychol 17:165–186PubMedCrossRefPubMedCentralGoogle Scholar
  67. Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G (2006) Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 18:227–241PubMedCrossRefPubMedCentralGoogle Scholar
  68. Grasby PM, Frith CD, Friston KJ, Simpson J, Fletcher PC, Frackowiak RS, Dolan RJ (1994) A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 117.(Pt 6:1271–1282PubMedCrossRefPubMedCentralGoogle Scholar
  69. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hall SD, Stanford IM, Yamawaki N, McAllister CJ, Rönnqvist KC, Woodhall GL, Furlong PL (2011) The role of GABAergic modulation in motor function related neuronal network activity. NeuroImage 56(3):1506–1510CrossRefGoogle Scholar
  71. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hasher L, Zacks RT (1988) Working memory, comprehension, and aging: a review and a new view. In: Bower GH (ed) The psychology of learning and motivation. Academic, New York, pp 193–225Google Scholar
  73. Hutton LC, Abbass M, Dickinson H, Ireland Z, Walker DW (2009a) Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci 31(5):437–451PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hutton C, Draganski B, Ashburner J, Weiskopf NA (2009b) Comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 48(2):371–380PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ishii R, Canuet L, Kurimoto R, Ikezawa K, Aoki Y, Azechi M, Takahashi H, Nakahachi T, Iwase M, Kazui H, Takeda M (2010) Frontal shift of posterior alpha activity is correlated with cognitive impairment in early Alzheimer’s disease: a magnetoencephalography-beamformer study. Psychogeriatrics 10(3):138–143PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2011) Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Hum Brain Mapp 32(7):1125–1140PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kikuchi M, Wada Y, Koshino Y, Nanbu Y, Hashimoto T (2000) Effects of scopolamine on interhemispheric EEG coherence in healthy subjects: analysis during rest and photic stimulation. Clin Electroencephalogr 31(2):109–115PubMedCrossRefPubMedCentralGoogle Scholar
  78. Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX et al (2010) Reading networks at rest. Cereb Cortex 10:2549–2559CrossRefGoogle Scholar
  79. Kukull WA, Bowen JD (2002) Dementia epidemiology. Med Clin N Am 86(3):573–590PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kurimoto R, Ishii R, Canuet L, Ikezawa K, Azechi M, Iwase M, Yoshida T, Kazui H, Yoshimine T, Takeda M (2008) Event-related synchronization of alpha activity in early Alzheimer’s disease and mild cognitive impairment: an MEG study combining beamformer and group comparison. Neurosci Lett 443(2):86–89PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kurimoto R, Ishii R, Canuet L, Ikezawa K, Iwase M, Azechi M, Aoki Y, Ikeda S, Yoshida T, Takahashi H, Nakahachi T, Kazui H, Takeda M (2012) Induced oscillatory responses during the Sternberg’s visual memory task in patients with Alzheimer’s disease and mild cognitive impairment. NeuroImage 59(4):4132–4140PubMedCrossRefPubMedCentralGoogle Scholar
  82. Lewandowsky S, Oberauer K (2008) The word-length effect provides no evidence for decay in short-term memory. Psychon Bull Rev 15(5):875–888PubMedCrossRefPubMedCentralGoogle Scholar
  83. Lewandowsky S, Duncan M, Brown GDA (2004) Time does not cause forgetting in short-term serial recall. Psychon Bull Rev 11:771–790PubMedCrossRefPubMedCentralGoogle Scholar
  84. Li SC, Lindenberger U, Sikström S (2001) Aging cognition: from neuromodulation to representation. Trends Cogn Sci 5(11):479–486PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li SC, Naveh-Benjamin M, Lindenberger U (2005) Aging neuromodulation impairs associative binding: a neurocomputational account. Psychol Sci 16(6):445–450PubMedPubMedCentralGoogle Scholar
  86. Lindenberger U, Baltes PB (1994) Sensory functioning and intelligence in old age: a strong connection. Psychol Aging 9:339–355PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. NeuroImage 51(1):102–111PubMedPubMedCentralCrossRefGoogle Scholar
  88. López ME, Bruna R, Aurtenetxe S, Pineda-Pardo JA, Marcos A, Arrazola J et al (2014) Alpha-band Hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J Neurosci 34(44):14551–14559.  https://doi.org/10.1523/JNEUROSCI.0964-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  89. López-Sanz D, Bruña R, Garcés P, Martín-Buro MC, Walter S, Delgado ML, Montenegro M, López Higes R, Marcos A, Maestú F (2017) Functional connectivity disruption in subjective cognitive decline and mild cognitive impairment: a common pattern of alterations. Front Aging Neurosci 9:109PubMedPubMedCentralCrossRefGoogle Scholar
  90. Madden DJ, Turkington TG, Provenzale JM, Denny LL, Hawk TC, Gottlob LR, Coleman RE (1999) Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum Brain Mapp 7:115–135PubMedCrossRefPubMedCentralGoogle Scholar
  91. Maestú F, Fernandez A, Simos PG, Gil-Gregorio P, Amo C, Rodriguez R, Arrazola J, Ortiz T (2001) Spatio-temporal patterns of brain magnetic activity during a memory task in Alzheimer’s disease. Neuroreport 12:3917–3922PubMedCrossRefPubMedCentralGoogle Scholar
  92. Maestú F, Arrazola J, Fernandez A, Simos PG, Amo C, Gil-Gregorio P, Fernandez S, Papanicolaou A, Ortiz T (2003) Do cognitive patterns of brain magnetic activity correlate with hippocampal atrophy in Alzheimer’s disease? J Neurol Neurosurg Psychiatry 74:208–212PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maestú F, Fernandez A, Simos PG, López-Ibor MI, Campo P, Criado J, Rodríguez-Palancas A, Ferre F, Amo C, Ortiz T (2004) Profiles of brain magnetic activity during a memory task in Alzheimer’s disease and non-demented elderly subjects with or without depression. J Neurol Neurosurg Psychiatry 75:1160–1162PubMedPubMedCentralCrossRefGoogle Scholar
  94. Maestú F, Garcia-Segura J, Ortiz T, Montoya J, Fernandez A, Gil-Gregorio P, Campo P, Fernandez S, Viano J, Portera A (2005) Evidence of biochemical and biomagnetic interactions in Alzheimer’s disease: an MEG and MR spectroscopy study. Dement Geriatr Cogn Disord 20:145–152PubMedCrossRefPubMedCentralGoogle Scholar
  95. Maestú F, Campo P, Gil-Gregorio P, Fernandez S, Fernandez A, Ortiz T (2006) Medial temporal lobe neuromagnetic hypoactivation and risk for developing cognitive decline in elderly population: a 2-year follow-up study. Neurobiol Aging 27:32–37PubMedCrossRefPubMedCentralGoogle Scholar
  96. Maestú F, Campo P, Del Rio D, Moratti S, Gil-Gregorio P, Fernandez A, Capilla A, Ortiz T (2008) Increased biomagnetic activity in the ventral pathway in mild cognitive impairment. Clin Neurophysiol 119:1320–1327PubMedCrossRefPubMedCentralGoogle Scholar
  97. Maestu F, Baykova E, Ruiz JM, Montejo P, Montenegro M, Llanero M, Solesio E, Gil P, Yubero R, Paul N, Pozo F, Nevado A (2011) Increased biomagnetic activity in healthy elderly with subjective memory complaints. Clin Neurophysiol 122(3):499–505PubMedCrossRefPubMedCentralGoogle Scholar
  98. Maestú F, Yubero R, Moratti S, Campo P, Gil-Gregorio P, Paul N, Solesio E, del Pozo F, Nevado A (2011) Brain activity patterns in stable and progressive mild cognitive impairment during working memory as evidenced by magnetoencephalography. J Clin Neurophysiol 28(2):202–209PubMedCrossRefPubMedCentralGoogle Scholar
  99. Maestú F, Peña JM, Garcés P, González S, Bajo R, Bagic A, Cuesta P, Funke M, Mäkelä JP, Menasalvas E, Nakamura A, Parkkonen L, López ME, Del Pozo F, Sudre G, Zamrini E, Pekkonen E, Henson RN, Becker JT, Magnetoencephalography International Consortium of Alzheimer’s Disease (2015) A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity. Neuroimage Clin 9:103–109PubMedPubMedCentralCrossRefGoogle Scholar
  100. May CP (1999) Synchrony effects in cognition: the costs and a benefit. Psychon Bull Rev 6:142–147PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moscovitch M, Winocur G (1995) Frontal lobes, memory, and aging. Proc Natl Acad Sci U S A 769:119–150CrossRefGoogle Scholar
  103. Muller NG, Knight RT (2006) The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience 139:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  104. Nairne JS (2002) Remembering over the short-term: the case against the standard model. Annu Rev Psychol 53:53–81PubMedCrossRefPubMedCentralGoogle Scholar
  105. Nakamura A, Cuesta P, Kato T, Arahata Y, Iwata K, Yamagishi M, Kuratsubo I, Kato K, Bundo M, Diers K, Fernández A, Maestú F, Ito K (2017) Early functional network alterations in asymptomatic elders at risk for Alzheimer’s disease. Sci Rep 7(1):6517PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nakamura A, Cuesta P, Fernández A, Arahata Y, Iwata K, Kuratsubo I, Bundo M, Hattori H, Sakurai T, Fukuda K, Washimi Y, Endo H, Takeda A, Diers K, Bajo R, Maestú F, Ito K, Kato T (2018) Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease. Brain 141:1470.  https://doi.org/10.1093/brain/awy044CrossRefPubMedPubMedCentralGoogle Scholar
  107. Nichols LM, Masdeu JC, Mattay VS, Kohn P, Emery M, Sambataro F, Kolachana B, Elvevåg B, Kippenhan S, Weinberger DR, Berman KF (2012) Interactive effect of apolipoprotein e genotype and age on hippocampal activation during memory processing in healthy adults. Arch Gen Psychiatry 69(8):804–813.  https://doi.org/10.1001/archgenpsychiatry.2011.1893CrossRefPubMedPubMedCentralGoogle Scholar
  108. O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57(4):632–638PubMedCrossRefPubMedCentralGoogle Scholar
  109. Osipova D, Ahveninen J, Kaakkola S, Jääskeläinen IP, Huttunen J, Pekkonen E (2003) Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin Neurophysiol 114(10):1902–1907PubMedCrossRefPubMedCentralGoogle Scholar
  110. Osipova D, Ahveninen J, Jensen O, Ylikoski A, Pekkonen E (2005) Altered generation of spontaneous oscillations in Alzheimer’s disease. NeuroImage 27(4):835–841PubMedCrossRefPubMedCentralGoogle Scholar
  111. Osipova D, Pekkonen E, Ahveninen J (2006) Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clin Neurophysiol 117(9):1990–1995PubMedCrossRefPubMedCentralGoogle Scholar
  112. Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR (2004) Aging reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci USA 101:13091–13095PubMedCrossRefPubMedCentralGoogle Scholar
  113. Park J, Carp J, Hebrank A, Park DC, Polk TA (2010) Neural specificity predicts fluid processing ability in older adults. J Neurosci 30:9253–9259PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Bashir S, Vernet M, Shafi M, Westover B, Vahabzadeh-Hagh AM, Rotenberg A (2011) Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 24(3–4):302–315PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pekkonen E, Huotilainen M, Virtanen J, Sinkkonen J, Rinne T, Ilmoniemi RJ, Näätänen R (1995) Age-related functional differences between auditory cortices: a whole-head MEG study. Neuroreport 6(13):1803–1806PubMedCrossRefPubMedCentralGoogle Scholar
  116. Pekkonen E, Huotilainen M, Virtanen J, Naatanen R, Ilmoniemi RJ, Erkinjuntti T (1996) Alzheimer’s disease affects parallel processing between the auditory cortices. Neuroreport 7(8):1365–1368PubMedCrossRefPubMedCentralGoogle Scholar
  117. Pekkonen E, Jaaskelainen IP, Hietanen M, Huotilainen M, Naatanen R, Ilmoniemi RJ et al (1999) Impaired preconscious auditory processing and cognitive functions in Alzheimer’s disease. Clin Neurophysiol 110(11):1942–1947PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pekkonen E, Hirvonen J, Jaaskelainen IP, Kaakkola S, Huttunen J (2001a) Auditory sensory memory and the cholinergic system: implications for Alzheimer’s disease. NeuroImage 14(2):376–382PubMedCrossRefPubMedCentralGoogle Scholar
  119. Pekkonen E, Jaaskelainen LP, Erkinjuntti T, Hietanen M, Huotilainen M, Ilmoniemi RJ et al (2001b) Preserved stimulus deviance detection in Alzheimer’s disease. Neuroreport 12(8):1649–1652PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pekkonen E, Jaaskelainen IP, Kaakkola S, Ahveninen J (2005) Cholinergic modulation of preattentive auditory processing in aging. NeuroImage 27(2):387–392PubMedCrossRefPubMedCentralGoogle Scholar
  121. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA, Klunk WE, Masters CL, Rowe CC (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130(Pt 11):2837–2844PubMedCrossRefPubMedCentralGoogle Scholar
  122. Puregger E, Walla P, Deecke L, Dal-Bianco P (2003) Magnetoencephalographic–features related to mild cognitive impairment. NeuroImage 20(4):2235–2244PubMedCrossRefPubMedCentralGoogle Scholar
  123. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ranasinghe KG, Hinkley LB, Beagle AJ, Mizuiri D, Honma SM, Welch AE, Hubbard I, Mandelli ML, Miller ZA, Garrett C, La A, Boxer AL, Houde JF, Miller BL, Vossel KA, Gorno-Tempini ML, Nagarajan SS (2017) Distinct spatiotemporal patterns of neuronal functional connectivity in primary progressive aphasia variants. Brain 140(10):2737–2751.  https://doi.org/10.1093/brain/awx217CrossRefPubMedPubMedCentralGoogle Scholar
  125. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689PubMedPubMedCentralCrossRefGoogle Scholar
  126. Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17:177–182CrossRefGoogle Scholar
  127. Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 15:245–251PubMedCrossRefPubMedCentralGoogle Scholar
  128. Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187PubMedCrossRefPubMedCentralGoogle Scholar
  129. Riekkinen P, Buzsaki G, Riekkinen P, Soininen H, Partanen J (1991) The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol 78:89–96PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rueda-Delgado L, Solesio-Jofre E, Serrien DJ, Daffertshofer A, Swinnen SP (2014) Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neurosci Biobehav Rev 47:614–635PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sakai K, Passingham RE (2004) Prefrontal selection and medial temporal lobe reactivation in retrieval of short-term verbal information. Cereb Cortex 14:914–921PubMedCrossRefPubMedCentralGoogle Scholar
  132. Salthouse TA (1991) Mediation of adults age differences in cognition by reductions in working memory and speedy processing. Psychol Sci 2:179–183CrossRefGoogle Scholar
  133. Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K, Yu GQ, Palop JJ, Mucke L (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 109(42):E2895–E2903PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schlee W, Leirer V, Kolassa IT, Weisz N, Elbert T (2012) Age-related changes in neural functional connectivity and its behavioral relevance. BMC Neurosci 14(13):16CrossRefGoogle Scholar
  136. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE (1997) Common blood flow changes across visual tasks: II: decreases in cerebral cortex. J Cogn Neurosci 9:648–663CrossRefGoogle Scholar
  137. Solesio-Jofre E, Lorenzo-López L, Gutiérrez R, López-Frutos JM, Ruiz-Vargas JM, Maestú F (2011) Age effects on retroactive interference during working memory maintenance. Biol Psychol 88(1):72–82PubMedCrossRefGoogle Scholar
  138. Solesio-Jofre E, Lorenzo-López L, Gutiérrez R, López-Frutos JM, Ruiz-Vargas JM, Maestú F (2012) Age-related effects in working memory recognition modulated by retroactive interference. J Gerontol A Biol Sci Med Sci 67(6):565–572PubMedCrossRefGoogle Scholar
  139. Solesio-Jofre E, Serbruyns L, Woolley D, Beets IAM, Mantini D, Swinnen S (2014) Aging effects on the resting state motor network and interlimb coordination. Hum Brain Mapp 35(8):3945–3961.  https://doi.org/10.1002/hbm.22450CrossRefPubMedGoogle Scholar
  140. Solesio-Jofre E, López-Frutos JM, Cashdollar N, Aurtenetxe S, de Ramón I, Fernando Maestú F (2016) The effects of aging on the working memory processes of multi-modal associations. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 24(3):299–320.  https://doi.org/10.1080/13825585.2016.1207749CrossRefPubMedPubMedCentralGoogle Scholar
  141. Solesio-Jofre E, Beets IAM, Woolley DG, Pauwels L, Chalavi S, Mantini D, Swinnen SP (2018) Age-dependent modulations of resting state connectivity following motor practice. Front Aging Neurosci 6:10–25.  https://doi.org/10.3389/fnagi.2018.00025CrossRefGoogle Scholar
  142. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292PubMedPubMedCentralCrossRefGoogle Scholar
  143. Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289(1–2):128–134. Epub 2009 Sep 2PubMedPubMedCentralCrossRefGoogle Scholar
  144. Stam CJ, van Cappellen van Walsum AM, Pijnenburg YA, Berendse HW, de Munck JC, Scheltens P et al (2002) Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band. J Clin Neurophysiol 19(6):562–574CrossRefGoogle Scholar
  145. Stam CJ, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. NeuroImage 32(3):1335–1344PubMedCrossRefPubMedCentralGoogle Scholar
  146. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(Pt 1):213–224PubMedCrossRefPubMedCentralGoogle Scholar
  147. Stephen JM, Montaño R, Donahue CH, Adair JC, Knoefel J, Qualls C, Hart B, Ranken D, Aine CJ (2010) Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer’s disease. J Neural Transm 117(2):217–225PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sullivan EV, Adalsteinsson E, Hedehus M, Ju C, Moseley M, Lim KO, Pfefferbaum A (2001) Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport 12(1):99–104PubMedCrossRefPubMedCentralGoogle Scholar
  149. Terry RD, Katzman R (2001) Life span and synapses: will there be a primary senile dementia? Neurobiol Aging 22(3):347–348PubMedCrossRefPubMedCentralGoogle Scholar
  150. Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A 91(6):2016–2020PubMedPubMedCentralCrossRefGoogle Scholar
  151. Velanova K, Lustig C, Jacoby LL, Buckner RL (2007) Evidence for frontally mediated controlled processing differences in older adults. Cereb Cortex 17(5):1033–1046PubMedCrossRefPubMedCentralGoogle Scholar
  152. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531PubMedCrossRefPubMedCentralGoogle Scholar
  153. Verdoorn TA, McCarten JR, Arciniegas DB, Golden R, Moldauer L, Georgopoulos A, Lewis S, Cassano M, Hemmy L, Orr W, Rojas DC (2011) Evaluation and tracking of Alzheimer’s disease severity using resting-state magnetoencephalography. J Alzheimers Dis 26 Suppl 3:239–55. https://www.ncbi.nlm.nih.gov/pubmed/21971464.  https://doi.org/10.3233/JAD-2011-0056.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Walla P, Puregger E, Lehrner J, Mayer D, Deecke L, Dal Bianco P (2005) Depth of word processing in Alzheimer patients and normal controls: a magnetoencephalographic (MEG) study. J Neural Transm 112(5):713–730PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wang L, Su L, Shen H, Hu D (2012) Decoding lifespan changes of the human brain using resting-state functional connectivity MRI. PLoS One 7(8):e44530.  https://doi.org/10.1371/journal.pone.0044530. Epub 2012 Aug 30CrossRefPubMedPubMedCentralGoogle Scholar
  156. West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292CrossRefGoogle Scholar
  157. Westlye ET, Lundervold A, Rootwelt H, Lundervold AJ, Westlye LT (2011) Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance. J Neurosci 31(21):7775–7783PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wixted JT (2004) The psychology and neuroscience of forgetting. Annu Rev Psychol 55:235–269PubMedCrossRefPubMedCentralGoogle Scholar
  159. World Population Prospects (2011) https://population.un.org/wpp/
  160. Zacks RT, Hasher L, Li KZH (1999) Human memory. In: Craik FIM, Salthouse TA, Mahwah NJ (eds) The handbook of aging and cognition. Erlbaum, Mahwah, pp 200–230Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fernando Maestú
    • 1
    • 2
    Email author
  • Elena Solesio-Jofre
    • 3
  • Ricardo Bajo
    • 1
  1. 1.Laboratory of Cognitive and Computational Neuroscience (UCM-UPM)Center for Biomedical TechnologyMadridSpain
  2. 2.Department of Experimental PsychologyComplutense University of MadridMadridSpain
  3. 3.Department of Biological and Health PsychologyUniversity Autónoma de MadridMadridSpain

Section editors and affiliations

  • Julia M. Stephen
    • 1
  1. 1.The Mind Research NetworkAlbuquerqueUSA

Personalised recommendations