Application of MEG in Understanding the Development of Executive and Social Cognitive Functions

  • Margot J. TaylorEmail author
  • Charline Urbain
  • Elizabeth W. Pang
Reference work entry


Human social and executive functions are complex and known to follow a prolonged developmental course from childhood through to early adulthood. These processes rely on the integrity and maturity of distributed neural regions, which also show protracted maturation. MEG is the ideal modality to determine the development of these intricate and multifaceted cognitive abilities; its exquisite temporal and spatial resolution allows investigators to track the age-related changes in both neural timing and location. The challenge for MEG has been twofold: to develop appropriate tasks to capture the neurodevelopmental trajectory of these functions and to develop appropriate analysis strategies that can capture the subtle, often rapid, cognitive processes, involving frontal lobe activity. In this chapter, we review MEG research on executive, social, and cognitive functions in typically developing children and clinical groups. The studies include the examination of working memory, mental flexibility, facial emotional processing and inhibition, and theory of mind. We end with a discussion on the challenges of testing young children in the MEG environment and the development of age-appropriate technologies and paradigms.


Social cognition Development ASD Very preterm Working memory Mental flexibility Emotional face processing Emotional regulation Theory of mind 


  1. Adolphs R, Damasio H, Tranel D (2002) Neural systems for recognition of emotional prosody: a 3-D lesion study. Emotion 2(1):23–51PubMedCrossRefPubMedCentralGoogle Scholar
  2. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4(7):267–278CrossRefGoogle Scholar
  3. Alloway TP, Gathercole SE, Kirkwood H, Elliott J (2009) The cognitive and behavioral characteristics of children with low working memory. Child Dev 80(2):606–621PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anagnostou E, Taylor MJ (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism 2(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson P (2002) Assessment and development of executive function (EF) during childhood. Child Neuropsychol 8:71–82PubMedCrossRefPubMedCentralGoogle Scholar
  6. Armbruster DJ, Ueltzhoffer K, Basten U, Fiebach CJ (2012) Prefrontal cortical mechanisms underlying individual differences in cognitive flexibility and stability. J Cogn Neurosci 24(12):2385–2399PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baddeley A (1992) Working memory. Science 255(5044):556–559PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baddeley A (1998) Recent developments in working memory. Curr Opin Neurobiol 8(2):234–238PubMedCrossRefPubMedCentralGoogle Scholar
  9. Barendse EM, Hendriks MP, Jansen JF, Backes WH, Hofman PA, Thoonen G et al (2013) Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates. J Neurodev Disord 5(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baron-Cohen S (1997) Mindblindness: an essay on autism and theory of mind. MIT Press, Cambridge, MAGoogle Scholar
  11. Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a “theory of mind”? Cognition 21(1):37–46CrossRefGoogle Scholar
  12. Batty M, Taylor MJ (2003) Early processing of the six basic facial emotional expressions. Brain Res Cogn Brain Res 17(3):613–620PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bayle DJ, Taylor MJ (2010) Attention inhibition of early cortical activation to fearful faces. Brain Res 1313:113–123PubMedCrossRefPubMedCentralGoogle Scholar
  14. Belleville S et al (2006) Working memory in autism. In: Alloway TP, Gathercole SE (eds) Working memory and neurodevelopmental disorders. Psychology Press, New YorkGoogle Scholar
  15. Benasich AA, Gou Z, Choudhury N, Harris KD (2008) Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res 195(2):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288(6):728–737PubMedCrossRefPubMedCentralGoogle Scholar
  17. Blakemore SJ (2010) The developing social brain: implications for education. Neuron 65(6):744–747PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blakemore SJ (2012) Development of the social brain in adolescence. J R Soc Med 105(3):111–116PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brass M, Ullsperger M, Knoesche TR, von Cramon DY, Phillips NA (2005) Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci 17(9):1367–1375PubMedCrossRefPubMedCentralGoogle Scholar
  20. Briscoe J, Gathercole SE, Marlow N (2001) Everyday memory and cognitive ability in children born very prematurely. J Child Psychol Psychiatry 42(6):749–754PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cain K, Oakhill J, Bryant P (2004) Children’s reading comprehension ability: concurrent prediction by working memory, verbal ability, and component skills. J Educ Psychol 96(1):31–42CrossRefGoogle Scholar
  23. Carrington SJ, Bailey AJ (2009) Are there theory of mind regions in the brain? A review of the neuroimaging literature. Hum Brain Mapp 30(8):2313–2335PubMedCrossRefPubMedCentralGoogle Scholar
  24. Carter EJ, Pelphrey KA (2008) Friend or foe? Brain systems involved in the perception of dynamic signals of menacing and friendly social approaches. Soc Neurosci 3(2):151–163PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cassidy S, Mitchell P, Chapman P, Ropar D (2015) Processing of spontaneous emotional responses in adolescents and adults with autism Spectrum disorders: effect of stimulus type. Autism Res 8(5):534–544PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ciairano S, Visu-Petra L, Settanni M (2007) Executive inhibitory control and cooperative behavior during early school years: a follow-up study. J Abnorm Child Psychol 35(3):335–345PubMedCrossRefPubMedCentralGoogle Scholar
  27. Colom R, Jung RE, Haier RJ (2007) General intelligence and memory span: evidence for a common neuroanatomic framework. Cogn Neuropsychol 24(8):867–878PubMedCrossRefPubMedCentralGoogle Scholar
  28. Craig F, Margari F, Legrottaglie AR, Palumbi R, de Giambattista C, Margari L (2016) A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatr Dis Treat 12:1191–1202PubMedPubMedCentralGoogle Scholar
  29. Dajani DR, Uddin LQ (2015) Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci 38(9):571–578PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davidson MC, Amso D, Anderson LC, Diamond A (2006) Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44(11):2037–2078PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dennis M, Agostino A, Roncadin C, Levin H (2009) Theory of mind depends on domain-general executive functions of working memory and cognitive inhibition in children with traumatic brain injury. J Clin Exp Neuropsychol 31(7):835–847PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dennis M, Simic N, Taylor GH, Bigler ED, Rubin K, Vannatta K, Gerhardt CA, Stancin T, Roncadin C, Yeates KO (2012) Theory of mind in children with traumatic brain injury. J Int Neuropsychol Soc 18:908–916PubMedPubMedCentralCrossRefGoogle Scholar
  33. Diaz MT, He G, Gadde S, Bellion C, Belger A, Voyvodic JT et al (2011) The influence of emotional distraction on verbal working memory: an fMRI investigation comparing individuals with schizophrenia and healthy adults. J Psychiatr Res 45(9):1184–1193PubMedPubMedCentralCrossRefGoogle Scholar
  34. Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE (2013a) Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci 7:791PubMedPubMedCentralGoogle Scholar
  35. Doesburg SM, Vidal J, Taylor MJ (2013b) Reduced theta connectivity during set-shifting in children with autism. Front Hum Neurosci 7:785PubMedPubMedCentralGoogle Scholar
  36. Dolcos F, Iordan AD, Kragel J, Stokes J, Campbell R, McCarthy G et al (2013) Neural correlates of opposing effects of emotional distraction on working memory and episodic memory: an event-related FMRI investigation. Front Psychol 4:293PubMedPubMedCentralCrossRefGoogle Scholar
  37. Durston S, Thomas KM, Worden MS, Yang Y, Casey BJ (2002) The effect of preceding context on inhibition: an event-related fMRI study. NeuroImage 16(2):449–453PubMedCrossRefPubMedCentralGoogle Scholar
  38. Elliott R (2003) Executive functions and their disorders. Br Med Bull 65:49–59PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fenoglio A, Georgieff MK, Elison JT (2017) Social brain circuitry and social cognition in infants born preterm. J Neurodev Disord 9:27PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fray P, Robbins TW, Sahakian BJ (1996) Neuropsychiatric applications of CANTAB. Int J Geriatr Psychiatry 11(4):329–336CrossRefGoogle Scholar
  41. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480PubMedPubMedCentralCrossRefGoogle Scholar
  42. Frith U (2004) Emanuel miller lecture: confusions and controversies about Asperger syndrome. J Child Psychol Psychiatry 45(4):672–686PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gathercole SE, Tiffany C, Briscoe J, Thorn A, ALSPAC team (2005) Developmental consequences of poor phonological short-term memory function in childhood: a longitudinal study. J Child Psychol Psychiatry 46(6):598–611PubMedCrossRefPubMedCentralGoogle Scholar
  44. Geier CF, Garver K, Terwilliger R, Luna B (2009) Development of working memory maintenance. J Neurophysiol 101(1):84–99PubMedCrossRefPubMedCentralGoogle Scholar
  45. Geurts HM, Corbett B, Solomon M (2009) The paradox of cognitive flexibility in autism. Trends Cogn Sci 13(2):74–82PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gou Z, Choudhury N, Benasich AA (2011) Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res 220(2):263–270PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gross J (2014) Handbook of emotion regulation, 2nd edn. Guilford Press, New YorkGoogle Scholar
  48. Hack M, Taylor HG, Schluchter M, Andreias L, Drotar D, Klein N (2009) Behavioral outcomes of extremely low birth weight children at age 8 years. J Dev Behav Pediatr 30(2):122–130PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hack M, Forrest CB, Schluchter M, Taylor HG, Drotar D, Holmbeck G et al (2011) Health status of extremely low-birth-weight children at 8 years of age: child and parent perspective. Arch Pediatr Adolesc Med 165(10):922–927PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hall J, Whalley HC, McKirdy JW, Sprengelmeyer R, Santos IM, Donaldson DI et al (2010) A common neural system mediating two different forms of social judgement. Psychol Med 40(7):1183–1192PubMedCrossRefPubMedCentralGoogle Scholar
  51. Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8(1):26–32PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hille ET, Weisglas-Kuperus N, van Goudoever JB, Jacobusse GW, Ens-Dokkum MH, de Groot L et al (2007) Functional outcomes and participation in young adulthood for very preterm and very low birth weight infants: the Dutch project on preterm and small for gestational age infants at 19 years of age. Pediatrics 120(3):e587–e595PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hobson R, Ouston J, Lee A (1989) Naming emotion in faces and voices: abilities and disabilities in autism and mental retardation. Br J Dev Psychol 7:237–250CrossRefGoogle Scholar
  55. Hung Y, Smith ML, Bayle DJ, Mills T, Taylor MJ (2010) Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. NeuroImage 50(2):727–733PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hung Y, Smith ML, Taylor MJ (2013) Functional dissociations in prefrontal-hippocampal working memory systems. Cortex 49:961–967PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jackson MC, Wolf C, Johnston SJ, Raymond JE, Linden DE (2008) Neural correlates of enhanced visual short-term memory for angry faces: an FMRI study. PLoS One 3(10):e3536PubMedPubMedCentralCrossRefGoogle Scholar
  58. Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N (2010) Psychiatric disorders in extremely preterm children: longitudinal finding at age 11 years in the EPICure study. J Am Acad Child Adolesc Psychiatry 49(5):453–463. e451PubMedPubMedCentralGoogle Scholar
  59. Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36(4):1292–1313PubMedPubMedCentralCrossRefGoogle Scholar
  60. Karmel BZ, Gardner JM, Meade LS, Cohen IL, London E, Flory MJ et al (2010) Early medical and behavioral characteristics of NICU infants later classified with ASD. Pediatrics 126(3):457–467PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kilts CD, Egan G, Gideon DA, Ely TD, Hoffman JM (2003) Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. NeuroImage 18(1):156–168PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kolb B, Wilson B, Taylor L (1992) Developmental changes in the recognition and comprehension of facial expression: implications for frontal lobe function. Brain Cogn 20(1):74–84PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kramer UM, Mohammadi B, Donamayor N, Samii A, Munte TF (2010) Emotional and cognitive aspects of empathy and their relation to social cognition – an fMRI-study. Brain Res 1311:110–120PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kuusikko S, Haapsamo H, Jansson-Verkasalo E, Hurtig T, Mattila ML, Ebeling H et al (2009) Emotion recognition in children and adolescents with autism spectrum disorders. J Autism Dev Disord 39(6):938–945PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kwon H, Reiss AL, Menon V (2002) Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci U S A 99(20):13336–13341PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lagattuta KH, Elrod NM, Kramer HJ (2016) How do thoughts, emotions, and decisions align? A new way to examine theory of mind during middle childhood and beyond. J Exp Child Psychol 149:116–133PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lamm C, Lewis MD (2010) Developmental change in the neurophysiological correlates of self-regulation in high- and low-emotion conditions. Dev Neuropsychol 35(2):156–176PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leung RC, Ye AX, Wong SM, Taylor MJ, Doesburg SM (2014) Reduced beta connectivity during emotional face processing in adolescents with autism. Mol Autism 5(1):51PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77(6):1002–1016PubMedPubMedCentralCrossRefGoogle Scholar
  70. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75(5):1357–1372PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mauss I, Bunge SA, Gross JJ (2007) Automatic emotion regulation. Soc Personal Psychol Compass 1:146–167CrossRefGoogle Scholar
  72. McCarthy G, Puce A, Belger A, Allison T (1999) Electrophysiological studies of human face perception. II: response properties of face-specific potentials generated in occipitotemporal cortex. Cereb Cortex 9(5):431–444PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mehta MA, Gore-Langton E, Golembo N, Colvert E, Williams SC, Sonuga-Barke E (2010) Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. J Cogn Neurosci 22(10):2316–2325PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mills T, Lalancette M, Moses SN, Taylor MJ, Quraan MA (2012) Techniques for detection and localization of weak hippocampal and medial frontal sources using beamformers in MEG. Brain Topogr 25(3):248–263PubMedCrossRefPubMedCentralGoogle Scholar
  75. Misic B, Doesburg SM, Fatima Z, Vidal J, Vakorin VA, Taylor MJ et al (2015) Coordinated information generation and mental flexibility: large-Scale network disruption in children with autism. Cereb Cortex 25(9):2815–2827PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mogadam A, Keller AE, Taylor MJ, Lerch JP, Anagnostou E, Pang EW (2018) Mental flexibility: an MEG investigation in typically developing children. Brain Cogn 120:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mossad SI, AuCoin-Power M, Urbain C, Smith ML, Pang EW, Taylor MJ (2016) Thinking about the thoughts of others; temporal and spatial neural activation during false belief reasoning. NeuroImage 134:320–327PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mossad SI, Smith ML, Pang EW, Taylor MJ (2017) Neural correlates of “theory of mind” in very preterm born children. Hum Brain Mapp 38(11):5577–5589PubMedCrossRefPubMedCentralGoogle Scholar
  79. Nagel BJ, Barlett VC, Schweinsburg AD, Tapert SF (2005) Neuropsychological predictors of BOLD response during a spatial working memory task in adolescents: what can performance tell us about fMRI response patterns? J Clin Exp Neuropsychol 27(7):823–839PubMedPubMedCentralCrossRefGoogle Scholar
  80. Neubauer AP, Voss W, Kattner E (2008) Outcome of extremely low birth weight survivors at school age: the influence of perinatal parameters on neurodevelopment. Eur J Pediatr 167(1):87–95PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L et al (2012) Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 69(6):E1–E8PubMedCrossRefPubMedCentralGoogle Scholar
  82. Oh A, Vidal J, Taylor MJ, Pang EW (2014) Neuromagnetic correlates of intra- and extra-dimensional set-shifting. Brain Cogn 86:90–97PubMedCrossRefPubMedCentralGoogle Scholar
  83. Olson IR, Plotzker A, Ezzyat Y (2007) The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130(Pt 7):1718–1731PubMedCrossRefPubMedCentralGoogle Scholar
  84. Olson IR, McCoy D, Klobusicky E, Ross LA (2013) Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 8(2):123–133PubMedPubMedCentralCrossRefGoogle Scholar
  85. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ozonoff S, Cook I, Coon H, Dawson G, Joseph RM, Klin A et al (2004) Performance on Cambridge neuropsychological test automated battery subtests sensitive to frontal lobe function in people with autistic disorder: evidence from the collaborative programs of excellence in autism network. J Autism Dev Disord 34(2):139–150PubMedCrossRefPubMedCentralGoogle Scholar
  87. Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 107(16):7580–7585PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pang EW (2011) Practical aspects of running developmental studies in the MEG. Brain Topogr 24(3–4):253–260PubMedPubMedCentralCrossRefGoogle Scholar
  89. Quraan MA, Moses SN, Hung Y, Mills T, Taylor MJ (2011) Detection and localization of evoked deep brain activity using MEG. Hum Brain Mapp 32(5):812–827PubMedCrossRefPubMedCentralGoogle Scholar
  90. Radke S, de Lange FP, Ullsperger M, de Bruijn ER (2011) Mistakes that affect others: an fMRI study on processing of own errors in a social context. Exp Brain Res 211(3–4):405–413PubMedPubMedCentralCrossRefGoogle Scholar
  91. Raznahan A, Wallace GL, Antezana L, Greenstein D, Lenroot R, Thurm A et al (2013) Compared to what? Early brain overgrowth in autism and the perils of population norms. Biol Psychiatry 74(8):563–575PubMedPubMedCentralCrossRefGoogle Scholar
  92. Riggs N, Jahromi LB, Razza RP, Dillworth-Bart JE, Mueller U (2006) Executive function and the promotion of social-emotional competence. J Appl Dev Psychol 27:300–309CrossRefGoogle Scholar
  93. Ritchie K, Bora S, Woodward LJ (2015) Social development of children born very preterm: a systematic review. Dev Med Child Neurol 57(10):899–918PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rodrigues MC, Mello RR, Fonseca SC (2006) Learning difficulties in schoolchildren born with very low birth weight. J Pediatr 82(1):6–14Google Scholar
  95. Rubia K, Smith AB, Taylor E, Brammer M (2007) Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 28(11):1163–1177PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ruffman T (2014) To belief or nor belief: Children’s theory of mind. Dev Rev 34:265–293CrossRefGoogle Scholar
  97. Rump KM, Giovannelli JL, Minshew NJ, Strauss MS (2009) The development of emotion recognition in individuals with autism. Child Dev 80(5):1434–1447PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rypma B, Berger JS, D'Esposito M (2002) The influence of working-memory demand and subject performance on prefrontal cortical activity. J Cogn Neurosci 14(5):721–731PubMedCrossRefPubMedCentralGoogle Scholar
  99. Safar K, Wong SM, Leung RC, Dunkley BT, Taylor MJ (2018) Altered phase synchrony during emotional face processing in children with autism spectrum disorder. Front Hum Neurosci 12:408Google Scholar
  100. Saigal S, Pinelli J, Hoult L, Kim MM, Boyle M (2003) Psychopathology and social competencies of adolescents who were extremely low birth weight. Pediatrics 111(5 Pt 1): 969–975PubMedCrossRefPubMedCentralGoogle Scholar
  101. Sanders J, Johnson KA, Garavan H, Gill M, Gallagher L (2008) A review of neuropsychological and neuroimaging research in autistic spectrum disorders: attention, inhibition and cognitive flexibility. Res Autism Spectr Disord 2(1):1–16CrossRefGoogle Scholar
  102. Sato J, Mossad SI, Hunt BEA, Dunkley BT, Urbain C, Smith ML, Taylor MJ (2018a) Alpha keeps it together: working memory maintenance in young children. Dev Cogn Neurosci 34:114–123PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sato J, Mossad SI, Wong SM, Smith ML, Hunt BAE, Dunkley BT, Taylor MJ (2018b) Alterations in alpha functional connectivity underlying working memory maintenance in children born very preterm. Presented at Pediatric Academic Society, Toronto, CanadaGoogle Scholar
  104. Satpute AB, Lieberman MD (2006) Integrating automatic and controlled processes into neurocognitive models of social cognition. Brain Res 1079(1):86–97PubMedCrossRefPubMedCentralGoogle Scholar
  105. Saxe RR, Whitfield-Gabrieli S, Scholz J, Pelphrey KA (2009) Brain regions for perceiving and reasoning about other people in school-aged children. Child Dev 80(4):1197–1209PubMedCrossRefPubMedCentralGoogle Scholar
  106. Scherf KS, Sweeney JA, Luna B (2006) Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci 18(7):1045–1058PubMedCrossRefPubMedCentralGoogle Scholar
  107. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N et al (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28(14):3586–3594PubMedPubMedCentralCrossRefGoogle Scholar
  108. St Clair-Thompson HL, Gathercole SE (2006) Executive functions and achievements in school: shifting, updating, inhibition, and working memory. Q J Exp Psychol (Hove) 59(4):745–759CrossRefGoogle Scholar
  109. Strahan E (2003) The effects of social anxiety and social skills on academic performance. Persona Individ Differ 34:347–366CrossRefGoogle Scholar
  110. Sussman D, Leung RC, Vogan VM, Lee W, Trelle S, Lin S et al (2015) The autism puzzle: diffuse but not pervasive neuroanatomical abnormalities in children with ASD. Neuroimage Clin 8:170–179PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tamm L, Menon V, Ringel J, Reiss AL (2004) Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43(11):1430–1440PubMedCrossRefPubMedCentralGoogle Scholar
  112. Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacology 35(1):147–168CrossRefGoogle Scholar
  113. Taylor MJ, Mills T, Smith ML, Pang EW (2008) Face processing in adolescents with and without epilepsy. Int J Psychophysiol 68(2):94–103PubMedCrossRefPubMedCentralGoogle Scholar
  114. Taylor MJ, Mills T, Zhang L, Smith ML, Pang EW (2010) Face processing in children: novel MEG findings. In: Supek S, Susac A (eds) IFMBE proceedings, vol 28. Springer, New York, pp 314–321Google Scholar
  115. Taylor MJ, Mills T, Pang EW (2011) The development of face recognition; hippocampal and frontal lobe contributions determined with MEG. Brain Topogr 24(3–4):261–270PubMedCrossRefPubMedCentralGoogle Scholar
  116. Taylor MJ, Donner EJ, Pang EW (2012) fMRI and MEG in the study of typical and atypical cognitive development. Neurophysiol Clin 42(1–2):19–25PubMedCrossRefPubMedCentralGoogle Scholar
  117. Taylor MJ, Robertson A, Keller AE, Sato J, Urbain C, Pang EW (2018) Inhibition in the face of emotion: characterization of the spatial-temporal dynamics that facilitate automatic emotion regulation. Hum Brain Mapp 39(7):2907–2916PubMedCrossRefPubMedCentralGoogle Scholar
  118. Telzer EH, Masten CL, Berkman ET, Lieberman MD, Fuligni AJ (2011) Neural regions associated with self control and mentalizing are recruited during prosocial behaviors towards the family. NeuroImage 58(1):242–249PubMedPubMedCentralCrossRefGoogle Scholar
  119. Todd RM, Evans JW, Morris D, Lewis MD, Taylor MJ (2011) The changing face of emotion: age related patterns of amygdala activation to salient faces. Soc Cogn Affect Neurosci 6:12–23PubMedCrossRefPubMedCentralGoogle Scholar
  120. Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA et al (2009) The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res 168(3):242–249PubMedPubMedCentralCrossRefGoogle Scholar
  121. Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S et al (2012) Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 5(5):289–313PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289PubMedCrossRefPubMedCentralGoogle Scholar
  123. Uddin LQ, Supekar K, Menon V (2013) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci 7:458PubMedPubMedCentralCrossRefGoogle Scholar
  124. Urbain CM, Pang EW, Taylor MJ (2015) Atypical spatiotemporal signatures of working memory brain processes in autism. Transl Psychiatry 5:e617PubMedPubMedCentralCrossRefGoogle Scholar
  125. Urbain C, Vogan VM, Ye AX, Pang EW, Doesburg SM, Taylor MJ (2016) Desynchronization of fronto-temporal networks during working memory processing in autism. Hum Brain Mapp 37(1):153–164PubMedCrossRefPubMedCentralGoogle Scholar
  126. Urbain C, Sato J, Pang EW, Taylor MJ (2017) The temporal and spatial brain dynamics of automatic emotion regulation in children. Dev Cogn Neurosci 26:62–68PubMedCrossRefPubMedCentralGoogle Scholar
  127. Urbain C, Sato J, Hammill C, Duerden EG, Taylor MJ (2019) Structural and functional neural correlates underlying emotion regulation at in very preterm born children. Hum Brain Mapp, in press.Google Scholar
  128. Van Eylen L, Boets B, Steyaert J, Evers K, Wagemans J, Noens I (2011) Cognitive flexibility in autism spectrum disorder: explaining the inconsistencies? Res Autism Spectr Disord 5(4):1390–1401CrossRefGoogle Scholar
  129. Vara AS, Pang EW, Vidal J, Anagnostou E, Taylor MJ (2014) Neural mechanisms of inhibitory control continue to mature in adolescence. Dev Cogn Neurosci 10:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  130. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239CrossRefGoogle Scholar
  131. Vidal J, Mills T, Pang EW, Taylor MJ (2012) Response inhibition in adults and teenagers: spatiotemporal differences in the prefrontal cortex. Brain Cogn 79(1):49–59PubMedCrossRefPubMedCentralGoogle Scholar
  132. Vistoli D, Brunet-Gouet E, Baup-Bobin E, Hardy-Bayle MC, Passerieux C (2011) Anatomical and temporal architecture of theory of mind: a MEG insight into the early stages. NeuroImage 54(2):1406–1414PubMedCrossRefPubMedCentralGoogle Scholar
  133. Vogan VM, Morgan BR, Powell TL, Smith ML, Taylor MJ (2016) The neurodevelopmental differences of increasing verbal working memory demand in children and adults. Dev Cogn Neurosci 17:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  134. Vuilleumier P, Schwartz S (2001) Emotional facial expressions capture attention. Neurology 56(2):153–158PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wellman HM, Cross D, Watson J (2001) Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev 72(3):655–684PubMedCrossRefPubMedCentralGoogle Scholar
  136. Williamson KE, Jakobson LS (2014) Social attribution skills of children born preterm at very low birth weight. Dev Psychopathol 26(4 Pt 1):889–900PubMedCrossRefPubMedCentralGoogle Scholar
  137. Woodward LJ, Edgin JO, Thompson D, Inder TE (2005) Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 128(Pt 11):2578–2587PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yerys BE, Wallace GL, Harrison B, Celano MJ, Giedd JN, Kenworthy LE (2009) Set-shifting in children with autism spectrum disorders: reversal shifting deficits on the Intradimensional/Extradimensional shift test correlate with repetitive behaviors. Autism 13(5):523–538PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yuk V, Urbain C, Pang EW, Anagnostou E, Buchsbaum D, Taylor MJ (2018) Do you know what I am thinking? Temporal and spatial brain activity during a theory-of-mind task in children with autism. Dev Cogn Neurosci 34:139–147PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Margot J. Taylor
    • 1
    • 2
    Email author
  • Charline Urbain
    • 1
    • 2
    • 3
  • Elizabeth W. Pang
    • 2
    • 4
  1. 1.Diagnostic ImagingUniversity of TorontoTorontoCanada
  2. 2.Neuroscience and Mental Health ProgrammeUniversity of TorontoTorontoCanada
  3. 3.UR2NF—Neuropsychology and Functional Neuroimaging Research GroupCenter for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute, Université Libre de Bruxelles (ULB)BrusselsBelgium
  4. 4.Neurology, The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Section editors and affiliations

  • Julia M. Stephen
    • 1
  1. 1.The Mind Research NetworkAlbuquerqueUSA

Personalised recommendations