Fetal Magnetoencephalography (fMEG)

  • Jana KeuneEmail author
  • Hari Eswaran
  • Hubert Preissl
Reference work entry


The human brain is one of the most complex organs which develops and adapts continuously over lifetime. Until now, neurophysiological research is mainly related to brain development from birth to adulthood, and neurophysiological research concerning prenatal human brain development only started in the last decades. Magnetoencephalography (MEG) is especially suited for fetal investigation, because it is completely noninvasive and not affected by the biological tissue separating the fetus from the outside. The first successful fetal MEG (fMEG) recording was reported in 1985 (Blum et al. Br J Obstet Gynaecol 92(12):1224–1229, 1985). Since the human brain in utero is highly vulnerable to internal and external influences, prenatal brain research is highly important to understand its development during that time period. Therefore, measurement techniques were improved, and basic research concerning brain development in utero was conducted. So far, mainly auditory and visual stimulation was used to assess fetal brain development by means of changes in signal processing speed or the development of basic forms of learning. The goal of basic fMEG research is to understand healthy fetal brain development and enable an early detection of possible deviations from it. In the future this may allow the development of early, even prenatal treatments and reduce the risk of adverse outcomes. This chapter gives an overview over structural and functional brain development and introduces the fMEG, a measurement technique to noninvasively assess functional fetal brain development in utero. Moreover, current fMEG studies are introduced, and the potential of the method of fMEG is illustrated and discussed.


Auditory evoked response (AER) Visual evoked response (VER) Fetal brain maturation Magnetoencephalography (MEG) 


  1. Arabin B, van Straaten HLM (2006) Fetal and neonatal hearing. In: Kurjak A, Chervenak FA (eds) Textbook of perinatal medicine, 2nd edn. Informa UK Ltd, Abingdon, pp 955–972Google Scholar
  2. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719CrossRefGoogle Scholar
  3. Birnholz JC, Benacerraf BR (1983) The development of human fetal hearing. Science 222(4623):516–518CrossRefGoogle Scholar
  4. Blum T, Saling E, Bauer R (1985) First magnetoencephalographic recordings of the brain activity of the human fetus. Br J Obstet Gynaecol 92(12):1224–1229CrossRefGoogle Scholar
  5. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54(1–3):241–257CrossRefGoogle Scholar
  6. Cooper ERA (1945) The development of the human lateral geniculate body. Brain 68:222–239CrossRefGoogle Scholar
  7. Counter SA (2010) Fetal and neonatal development of the auditory system. In: Lagerkrantz H, Hanson MA, Ment LR, Peebles DM (eds) The newborn brain: neuroscience and clinical applications, 2nd edn. Cambridge University Press, Cambridge, UK, pp 163–184CrossRefGoogle Scholar
  8. Draganova R, Eswaran H, Murphy P, Huotilainen M, Lowery C, Preissl H (2005) Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. Neuroimage 28(2):354–361CrossRefGoogle Scholar
  9. Draganova R, Eswaran H, Murphy P, Lowery C, Preissl H (2007) Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum Dev 83(3):199–207CrossRefGoogle Scholar
  10. Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Rose D, Vrba J, Lowery CL (2002a) Short-term serial magnetoencephalography recordings of fetal auditory evoked responses. Neurosci Lett 331:128–132CrossRefGoogle Scholar
  11. Eswaran H, Wilson J, Preissl H, Robinson S, Vrba J, Murphy P, Rose D, Lowery C (2002b) Magnetoencephalographic recordings of visual evoked brain activity in the human fetus. Lancet 360(9335):779–780CrossRefGoogle Scholar
  12. Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H (2004) Functional development of the visual system in human fetus using magnetoencephalography. Exp Neurol 190:S52–S58CrossRefGoogle Scholar
  13. Eswaran H, Lowery CL, Wilson JD, Murphy P, Preissl H (2005) Fetal magnetoencephalography – a multimodal approach. Dev Brain Res 154:57–62CrossRefGoogle Scholar
  14. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6(4):551–560CrossRefGoogle Scholar
  15. Graven SN, Browne JV (2008) Visual development in the human fetus, infant, and young child. Newborn Infant Nurs Rev 8(4):194–201CrossRefGoogle Scholar
  16. Henver RF (2000) Development of connections in the human visual system during fetal mid-gestation: a dil-tracing study. J Neuropathol Exp Neurol 59(5):385–392CrossRefGoogle Scholar
  17. Hepper PG, Shahidullah BS (1994) Development of fetal hearing. Arch Dis Child 71(2):F81–F87CrossRefGoogle Scholar
  18. Hitchcock PF, Hickey TL (1980) Prenatal development of the human lateral geniculate nucleus. J Comp Neurol 194:395–411CrossRefGoogle Scholar
  19. Holst M, Eswaran H, Lowery C, Murphy P, Norton J, Preissl H (2005) Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol 116(8):1949–1955CrossRefGoogle Scholar
  20. Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43(2):224–235CrossRefGoogle Scholar
  21. Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, Edwards S, Skarupa A, Lisowska-Miszczyk I (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32(4):270–278CrossRefGoogle Scholar
  22. Kiefer I, Siegel E, Preissl H, Ware M, Schauf B, Lowery C, Eswaran H (2008) Delayed maturation of auditory-evoked responses in growth-restricted fetuses revealed by magnetoencephalographic recordings. Am J Obstet Gynecol 199(5):503.e501–503.e507CrossRefGoogle Scholar
  23. Kretschmann HJ, Kammradt G, Krauthausen I, Sauer B, Wingert F (1986) Brain growth in man. Bibl Anat 28:1–26Google Scholar
  24. Lengle JM, Chen M, Wakai RT (2001) Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin Neurophysiol 112:785–792CrossRefGoogle Scholar
  25. Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30:718–729CrossRefGoogle Scholar
  26. Matuz T, Govindan RB, Preissl H, Siegel ER, Muenssinger J, Murphy P, Ware M, Lowery CL, Eswaran H (2012) Habituation of visual evoked responses in neonates and fetuses: a MEG study. Dev Cogn Neurosci 2(3):303–316CrossRefGoogle Scholar
  27. Muenssinger J, Matuz T, Schleger F, Kiefer-Schmid I, Goelz R, Wacker-Gussmann A, Birbaumer N, Preissl H (2013) Auditory habituation in the fetus and neonate – a fMEG study. Dev Sci 16(2):287–295CrossRefGoogle Scholar
  28. Muhlhausler BS, Adam CL, McMillen IC (2008) Maternal nutrition and the programming of obesity: the brain. Organogenesis 4(3):144–152CrossRefGoogle Scholar
  29. Pinel JP (2003) Development of the nervous system. In: Pinel JP (ed) Biopsychology, 5th edn. Allyn and Bacon, Boston, pp 221–239Google Scholar
  30. Preissl H, Lowery CL, Eswaran H (2004) Fetal magnetoencephalography: current progress and trends. Exp Neurol 190(Suppl 1):S28–S36CrossRefGoogle Scholar
  31. Preissl H, Lowery CL, Eswaran H (2005) Fetal magnetoencephalography: viewing the developing brain in utero. In: Preissl H (ed) Magnetoencephalography. Elsevier Academic Press, San Diego, pp 2–20Google Scholar
  32. Pujol R, Lavigne-Rebillard M, Uziel A (1991) Development of the human cochlea. Acta Otolaryngol Suppl 482:7–12; discussion 13CrossRefGoogle Scholar
  33. Querleu D, Renard X, Versyp F, Paris-Delrue L, Crepin G (1988) Fetal hearing. Eur J Obstet Gynecol Reprod Biol 28(3):191–212CrossRefGoogle Scholar
  34. Schleussner E, Schneider U (2004) Developmental changes of auditory-evoked fields in fetuses. Exp Neurol 190(Suppl 1):S59–S64CrossRefGoogle Scholar
  35. Schneider U, Arnscheidt C, Schwab M, Haueisen J, Seewald HJ, Schleussner E (2011) Steroids that induce lung maturation acutely affect higher cortical function: a fetal magnetoencephalography study. Reprod Sci 18(1):99–106CrossRefGoogle Scholar
  36. Sheridan CJ, Preissl H, Siegel ER, Murphy P, Ware M, Lowery CL, Eswaran H (2008) Neonatal and fetal response decrement of evoked responses: a MEG study. Clin Neurophysiol 119(4):796–804CrossRefGoogle Scholar
  37. Singer LT, Nelson S, Short E, Min MO, Lewis B, Russ S, Minnes S (2008) Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr 153(1):105–111CrossRefGoogle Scholar
  38. Szitanyi P, Janda J, Poledne R (2003) Intrauterine undernutrition and programming as a new risk of cardiovascular disease in later life. Physiol Res 52(4):389–395PubMedGoogle Scholar
  39. Talge NM, Neal C, Glover V (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48(3–4):245–261CrossRefGoogle Scholar
  40. Whitelaw A, Thoresen M (2000) Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal 83:F154–F157CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of NeurologyKlinikum Bayreuth GmbHBayreuthGermany
  2. 2.Department of Obstetrics and GynecologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), fMEG CenterUniversity of TübingenTübingenGermany

Section editors and affiliations

  • Julia M. Stephen
    • 1
  1. 1.The Mind Research NetworkAlbuquerqueUSA

Personalised recommendations