Neural Decoding and Brain Machine Interfaces Based on Electromagnetic Oscillatory Activities: A Challenge for MEG

  • Masayuki HirataEmail author
Reference work entry


Many neuromagnetic studies have established that desynchronization in the alpha to low gamma bands well reflects functional localization of motor, somatosensory, and language functions. However, it is still difficult to record neuromagnetic high-gamma activities with stability on a single trial basis. Electrocorticograms provide us with high-gamma band activities on a single trial basis. High-gamma band activities well reflects somatotopic representations, and enable accurate neural decoding. One of the technological challenges in neuromagnetism is to establish a method for neuromagnetic measurement of high-gamma band activities on a single-trial basis. This would enable not only accurate neural decoding using MEG but would also allow phase analyses revealing coupling phenomena between the gamma and other bands.


Neural decoding Brain machine interfaces Electrocorticography Magnetoencephalography Oscillations 


  1. Cheyne D, Bells S, Ferrari P, Gaetz W, Bostan AC (2008) Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. NeuroImage 42:332–342CrossRefGoogle Scholar
  2. Fukuma R, Yanagisawa T, Saitoh Y, Hosomi K, Kishima H, Shimizu T, Sugata H, Yokoi H, Hirata M, Kamitani Y, Yoshimine T (2016) Real-time control of a Neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci Rep 6:21781CrossRefGoogle Scholar
  3. Goto T, Hirata M, Umekawa Y, Yanagisawa T, Shayne M, Saitoh Y, Kishima H, Yorifuji S, Yoshimine T (2011) Frequency-dependent spatiotemporal distribution of cerebral oscillatory changes during silent reading: a magnetoencephalographic group analysis. NeuroImage 54:560–567CrossRefGoogle Scholar
  4. Hashimoto H, Hasegawa Y, Araki T, Sugata H, Yanagisawa T, Yorifuji S, Hirata M (2017) Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG. Sci Rep 7:14262CrossRefGoogle Scholar
  5. Hirata M, Kato A, Taniguchi M, Ninomiya H, Cheyne D, Robinson SE, Maruno M, Kumura E, Ishii R, Hirabuki N, Nakamura H, Yoshimine T (2002) Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci Lett 318:73–76CrossRefGoogle Scholar
  6. Hirata M, Kato A, Taniguchi M, Saitoh Y, Ninomiya H, Ihara A, Kishima H, Oshino S, Baba T, Yorifuji S, Yoshimine T (2004) Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. NeuroImage 23:46–53CrossRefGoogle Scholar
  7. Hirata M, Goto T, Barnes G, Umekawa Y, Yanagisawa T, Kato A, Oshino S, Kishima H, Hashimoto N, Saitoh Y, Tani N, Yorifuji S, Yoshimine T (2010) Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures. J Neurosurg 112:528–538CrossRefGoogle Scholar
  8. Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42:817–826CrossRefGoogle Scholar
  9. Sugata H, Goto T, Hirata M, Yanagisawa T, Shayne M, Matsushita K, Yoshimine T, Yorifuji S (2012a) Movement-related neuromagnetic fields and performances of single trial classifications. Neuroreport 23:16–20CrossRefGoogle Scholar
  10. Sugata H, Goto T, Hirata M, Yanagisawa T, Shayne M, Matsushita K, Yoshimine T, Yorifuji S (2012b) Neural decoding of unilateral upper limb movements using single trial MEG signals. Brain Res 1468:29–37CrossRefGoogle Scholar
  11. Taniguchi M, Kato A, Fujita N, Hirata M, Tanaka H, Kihara T, Ninomiya H, Hirabuki N, Nakamura H, Robinson SE, Cheyne D, Yoshimine T (2000) Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. NeuroImage 12:298–306CrossRefGoogle Scholar
  12. Yanagisawa T, Hirata M, Saitoh Y, Goto T, Kishima H, Fukuma R, Yokoi H, Kamitani Y, Yoshimine T (2011) Real-time control of a prosthetic hand using human electrocorticography signals. J Neurosurg 114:1715–1722CrossRefGoogle Scholar
  13. Yanagisawa T, Yamashita O, Hirata M, Kishima H, Saitoh Y, Goto T, Yoshimine T, Kamitani Y (2012a) Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J Neurosci 32:15467–15475CrossRefGoogle Scholar
  14. Yanagisawa T, Hirata M, Saitoh Y, Kishima H, Matsushita K, Goto T, Fukuma R, Yokoi H, Kamitani Y, Yoshimine T (2012b) Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol 71:353–361CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurological Diagnosis and RestorationOsaka University Graduate School of MedicineSuitaJapan

Section editors and affiliations

  • Lauri Parkkonen
    • 1
  1. 1.Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland

Personalised recommendations