Unified Principles of Thalamocortical Network Dynamics: A Framework for Typical/Atypical Functional Connectivity

  • Urs RibaryEmail author
  • Sam M. Doesburg
  • Lawrence M. Ward
Reference work entry


In more recent years, there has been increased interest in understanding the brain’s functional connectivity within local and long-range networks. The structure and functional dynamics connectivity at the cortical level has received considerable attention, the structural and functional dynamics of thalamocortical interactions are as yet insufficiently integrated with our knowledge of large-scale connectivity and regional function. An important question, yet to be answered in detail, is how typical cognitive functions and their alterations in neuropsychiatric pathologies are temporally generated across the entire brain space (thalamocortical, corticocortical, corticothalamic) based on intact or altered brain structure, function, and neurochemistry.

We are reviewing MEG and related EEG research in the context of multimodal imaging findings, focusing on thalamocortical dynamics and their role in functional connectivity across corticocortical, and corticothalamic circuits, including oscillatory synchronization within and across the various frequency bands underlying cognition. We then further explore the cognitive consequences of various disruptions of thalamocortical and corticocortical dynamics, including slowing and selective loss of functional network dynamics in particular brain networks related to disabilities or neuropsychiatric pathologies.

We are presenting an overview of current findings and their conceptual implications for how brain imaging technologies can further contribute to a better understanding of the unified principles of the brain’s structural, functional, and temporal connectivity dynamics and their relationship to typical and atypical sensory-motor processing and cognition including consciousness.


Thalamocortical Corticocortical Corticothalamic Local and large-scale networks Thalamocortical processing Synchronization Functional connectivity dynamics Alpha Theta Gamma Unified principles Cognition Consciousness Cognitive deficit Neurology Psychiatry Traumatic brain injury 


  1. Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880PubMedPubMedCentralCrossRefGoogle Scholar
  2. Babloyantz A (1991) Self-organization, emerging properties and learning. Plenum Press, New YorkCrossRefGoogle Scholar
  3. Banerjee S, Snyder AC, Molholm S, Foxe JJ (2011) Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms? J Neurosci 31:9923–9932PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barth DS, MacDonald KD (1996) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383:78–81PubMedCrossRefPubMedCentralGoogle Scholar
  5. Benasich AA, Fitch RH (2012) Developmental dyslexia. Paul H Brooks Publishing Co, BaltimoreGoogle Scholar
  6. Benasich AA, Tallal P (2002) Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res 136:31–49PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C et al.(2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862PubMedCrossRefPubMedCentralGoogle Scholar
  8. Burgess AP (2012) Towards a unified understanding of event-related changes in the EEG: the firefly model of synchronization through cross frequency phase modulation. PLoS One 7(9):e45630. Scholar
  9. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 13(5793):1626–1628CrossRefGoogle Scholar
  10. Canolty RT, Ganguly K, Kennerly SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci U S A 107:17356PubMedPubMedCentralCrossRefGoogle Scholar
  11. Castaigne P, Lhermitte F, Buge A, Escourolle P, Derouisne C, Der Agopian P et al.(1980) Paramedian thalamic and midbrain infarcts: clinical and neuropathological study. Ann Neurol 10:127–214CrossRefGoogle Scholar
  12. Crick F, Koch C (1990) Some reflections on visual awareness. Cold Spring Harb Symp Quant Biol 55:953–962PubMedCrossRefPubMedCentralGoogle Scholar
  13. De Ridder D, Vanneste S, Langguth B, Llinas R (2015) Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol 6:124PubMedPubMedCentralCrossRefGoogle Scholar
  14. DeVolder AG, Goffinet AM, Bol A, Michel C, de Barsy T, Laterre C (1990) Brain glucose metabolism in postanoxic stroke. Arch Neurol 47:197–204PubMedCrossRefPubMedCentralGoogle Scholar
  15. Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008) Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex 18:386–396PubMedCrossRefPubMedCentralGoogle Scholar
  16. Doesburg SM, Green JJ, McDonald JJ, Ward LM (2009) Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 4:e6142PubMedPubMedCentralCrossRefGoogle Scholar
  17. Doesburg SM, Herdman AT, Ribary U, Cheung T, Moiseev A, Weinberg H, Liotti M, Weeks D, Grunau RE (2010) Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children. Exp Brain Res 4:719–727CrossRefGoogle Scholar
  18. Doesburg SM, Ribary U, Herdman AT, Miller SP, Poskitt KJ, Moiseev A, Whitfield MF, Synnes A, Grunau RE (2011a) Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm. NeuroImage 54:2330–2339PubMedCrossRefPubMedCentralGoogle Scholar
  19. Doesburg S, Ribary U, Herdman AT, Moiseev A, Cheung T, Miller SP, Poskitt KJ, Weinberg H, Whitfield MF, Synnes A, Grunau RE (2011b) Magnetoencephalography reveals slowing of resting peak oscillatory frequency in children born very preterm. J Paediatr Res 70:171–176CrossRefGoogle Scholar
  20. Doesburg SM, Green JJ, McDonald JJ, Ward LM (2012) Theta modulation of inter-regional gamma synchronization during auditory attention control. Brain Res 1431:77–85PubMedCrossRefPubMedCentralGoogle Scholar
  21. Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE (2013) Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci 7:791PubMedPubMedCentralGoogle Scholar
  22. Façon E, Steriade M, Wertheim N (1958) Hypersomnie prolongée engendrée par les lésions bilatérales du système activateur médial. Le syndrome thrombotique de la bifurcation du tronc basilaire. Rev Neurol (Paris) 98:117–133Google Scholar
  23. Fair DA, Bathula D, Mills KL, Costa Dias TG, Blythe MS, Zhang D et al.(2010) Maturing thalamocortical functional connectivity across development. Front Syst Neurosci 4:1–10Google Scholar
  24. Fell J et al.(2002) Suppression of EEG gamma activity may cause the attentional blink. Conscious Cogn 11:114–122PubMedCrossRefPubMedCentralGoogle Scholar
  25. Florin E, Baillet S (2015) The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. NeuroImage 88:26–35CrossRefGoogle Scholar
  26. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1506–1507CrossRefGoogle Scholar
  29. Gabrieli JDE (2009) Dyslexia: a new synergy between education and cognitive neuroscience. Science 325:280–283PubMedCrossRefPubMedCentralGoogle Scholar
  30. Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10:99–114CrossRefGoogle Scholar
  31. Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24:31–47PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86:1698–1702PubMedPubMedCentralCrossRefGoogle Scholar
  33. Green JJ, Doesburg SM, Ward LM, McDonald JJ (2011) Electrical neuroimaging of voluntary audiospatial attention: evidence for a supramodal attention control network. J Neurosci 31:3560–3564PubMedPubMedCentralCrossRefGoogle Scholar
  34. Griesmayr B, Gruber WR, Klimesch W, Sauseng P (2010) Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol Learn Mem 93:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  35. Guillery RW, Sherman SM (2002) The thalamus as a monitor of motor outputs. Phil Trans R Soc London 357:1809–1821CrossRefGoogle Scholar
  36. Hanslmayer S, Gross J, Klimesch W, Shapiro KL (2011) The role of alpha oscillations in temporal attention. Brain Res Rev 67:331–343CrossRefGoogle Scholar
  37. Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44–49PubMedCrossRefPubMedCentralGoogle Scholar
  38. Heim S, Eulitz C, Kaufmann J, Fuchter I, Pantev C, Lamprecht-Dinnesen A et al.(2000) Atypical organisation of the auditory cortex in dyslexia as revealed by MEG. Neuropsychologia 38:1749–1759PubMedCrossRefPubMedCentralGoogle Scholar
  39. Helenius P, Uutela K, Hari R (1999) Auditory stream segregation in dyslexic adults. Brain 122:907–913PubMedCrossRefPubMedCentralGoogle Scholar
  40. Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, Asmussen S, D’Andrea J, Chun W, Levy M, Cui L, Song T, Baker DG, Hammer P, McLay R, Theilmann RJ, Coimbra R, Diwakar M, Boyd C, Neff J, Liu TT, Webb-Murphy J, Farinpour R, Cheung C, Harrington DL, Heister D, Lee RR (2012) An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage 61:1067PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ibrahim GM, Anderson RA, Akiyama T, Ochi A, Otsubo H, Singh-Cadieux G, Donner E, Rutka JT, Snead OC, Doesburg SM (2013) Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology. J Neurophysiol 110(10):2475–2483PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ibrahim GM, Wong SM, Anderson RA, Singh-Cadieux G, Akiyama T, Ochi A, Otsubo H, Okanishi T, Vailiante TA, Donner E, Rutka JT, Snead OC, Doesburg SM (2014) Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp Neurol 251:30–38PubMedCrossRefPubMedCentralGoogle Scholar
  43. Jahnsen H, Llinás RR (1984) Electro-physiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jeanmonod D, Magnin M, Morel A (1996) Low-threshold calcium spike bursts in the human thalamus: common physiopathology for sensory, motor and limbic positive symptoms. Brain 119:363–375PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jeanmonod D, Magnin M, Morel A, Siegemund M, Cancro R, Lanz M, Llinás R, Ribary U, Kronberg E, Schulman JJ, Zonenshayn M (2001) Thalamocortical dysrhythmia II: clinical and surgical aspects. Thalamus Relat Syst 1:245–254Google Scholar
  46. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:1–8CrossRefGoogle Scholar
  47. Jensen O, Vanni S (2002) A new method to identify multiple sources of oscillatory activity. NeuroImage 15:568–574PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324CrossRefGoogle Scholar
  49. Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37:357–369PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jerbi K, Ossandón T, Hamamé CM, Senova S, Dalal SS et al.(2009) Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 30:1758–1771PubMedCrossRefPubMedCentralGoogle Scholar
  51. John ER, Prichep LS, Friedman J, Easton P (1988) Neurometrics: computer assisted differential diagnosis of brain dysfunctions. Science 293:162–169CrossRefGoogle Scholar
  52. Joliot M, Ribary U, Llinás R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91:11748–11751PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601PubMedPubMedCentralGoogle Scholar
  54. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc London 357:1659–1673CrossRefGoogle Scholar
  55. Jones EG (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. In: Schiff ND, Laureys S (eds) Disorders of consciousness, Annals of the New York Academy of Sciences (En ligne), vol 1157. New York Academy of Sciences, Boston, pp 10–23Google Scholar
  56. Kahana MJ, Seelig D, Madsen JR (2001) Theta returns. Curr Opin Neurobiol 11:739–744PubMedCrossRefGoogle Scholar
  57. Kirschner A, Kam JWY, Handy TC, Ward LM (2012) Differential synchronization in default and task-specific networks of the human brain. Front Hum Neurosci 6:139PubMedPubMedCentralCrossRefGoogle Scholar
  58. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition timing hypothesis. Brain Res Rev 53:63–88PubMedCrossRefPubMedCentralGoogle Scholar
  59. Laureys S (2005) Death, unconsciousness and the brain. Nat Rev Neurosci 6:899–909PubMedCrossRefPubMedCentralGoogle Scholar
  60. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A et al.(1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9:377–382PubMedCrossRefPubMedCentralGoogle Scholar
  61. Laureys S, Owen AM, Schiff N (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546PubMedCrossRefPubMedCentralGoogle Scholar
  62. Laureys S, Gosseries O, Tononi G (2015) The neurology of consciousness: cognitive neuroscience and neuropathology. Academic, San DiegoGoogle Scholar
  63. Lee G, Byram AC, Owen AM, Ribary U, Stoessl J, Townson A, Stables C, Illes J (2015) Canadian perspectives on the clinical actionability of neuroimagingin disorders of consciousness. Can J Neurol Sci 42:96–105PubMedCrossRefPubMedCentralGoogle Scholar
  64. Levy DE, Sidtis JJ, Rottenberg DA, Jarden JO, Strother SC, Dhawan V et al. (1987) Differences in cerebral blood flow and glucose utilization in vegetative versus locked-in patients. Ann Neurol 22:673–682PubMedCrossRefPubMedCentralGoogle Scholar
  65. Llinás R (1993) Is dyslexia a dyschronia? Ann N Y Acad Sci 682:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  66. Llinás R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci U S A 90:2078–2081PubMedPubMedCentralCrossRefGoogle Scholar
  67. Llinás R, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic activity in the 10 to 50Hz frequency range. Proc Natl Acad Sci U S A 88:897–901PubMedPubMedCentralCrossRefGoogle Scholar
  68. Llinás R, Ribary U, Joliot M, Wang XJ (1994) Content and context in temporal thalamocortical binding. In: Buzsaki G, Llinás R, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the brain. Springer, Heidelberg, pp 251–272CrossRefGoogle Scholar
  69. Llinás R, Ribary U, Tallal P (1998a) Dyschronic language-based learning disability. In: Von Euler C, Lundberg I, Llinás R (eds) Basic mechanisms in cognition and language. Elsevier Science, New York, pp 101–108Google Scholar
  70. Llinás R, Ribary U, Contreras D, Pedroarena C (1998b) The neuronal basis for consciousness. Phil Trans R Soc London 353:1841–1849CrossRefGoogle Scholar
  71. Llinás R, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamo-cortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227PubMedPubMedCentralCrossRefGoogle Scholar
  72. Llinás R, Ribary U, Jeanmonod D, Cancro R, Kronberg E, Schulman JJ, Zonenshayn M, Magnin M, Morel A, Siegemund M (2001) Thalamocortical dysrhythmia I: functional and imaging aspects. Thalamus Relat Syst 1:237–244CrossRefGoogle Scholar
  73. Llinás RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99:449–454PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lou HC, Joensson M, Biermann-Ruben K, Schnitzler A, Ostergaard L, Kjaer TW, Gross J (2011) Recurrent activity in higher order, modality non-specific brain regions: a granger causality analysis of autobiographic memory retrieval. PLoS One 6:e22286PubMedPubMedCentralCrossRefGoogle Scholar
  75. Madler C, Keller I, Schwender D, Poeppel E (1991) Sensory information processing during general anaesthesia: effect of isoflurane on auditory evoked neuronal oscillations. Br J Anaesth 66:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mazaheri A, Picton TW (2005) EEG spectral dynamics during discrimination of auditory and visual targets. Cogn Brain Res 24:81–96CrossRefGoogle Scholar
  77. Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  78. Miller G (2010) Neuroscientists grapple with their field’s big questions. Science 330:164PubMedCrossRefPubMedCentralGoogle Scholar
  79. Moiseev A, Doesburg SM, Herdman AT, Ribary U, Grunau R (2015) Altered network oscillations and functional connectivity dynamics in children born very preterm. Brain Topogr 28:726–745PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mumford D (1991) On the computational architecture of the neocortex. The role of the thalamo-cortical loop. Biol Cybern 65:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nagarajan S, Mahncke H, Salz T, Tallal P, Roberts T, Merzenich MM (1999) Cortical auditory signal processing in poor readers. Proc Natl Acad Sci U S A 96:6483–6488PubMedPubMedCentralCrossRefGoogle Scholar
  82. Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O (2006) Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci 26:7523–7531PubMedPubMedCentralCrossRefGoogle Scholar
  83. Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS et al.(2010) Putting brain training to the test. Nature 465:775–778PubMedPubMedCentralCrossRefGoogle Scholar
  84. Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30:150–158PubMedCrossRefGoogle Scholar
  85. Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neural synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 107:7580–7585PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 88:8996–9000PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 174:93–96PubMedCrossRefGoogle Scholar
  88. Pfurtscheller G, Schwarz G, Pfurtscheller B (1983) Computer assisted analysis of EEG, evoked potentials, EEG reactivity and heart rate variability in comatose patients. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:66–73PubMedPubMedCentralGoogle Scholar
  89. Pfurtscheller G, Stancak A, Neuper C (1996) Event-related synchronization (ERS) in the alpha-band – an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  90. Plum F, Schiff N, Ribary U, Llinás R (1998) Coordinated expression in chronically unconscious persons. Phil Trans R Soc London 353:1929–1933CrossRefGoogle Scholar
  91. Proske JH, Jeanmonod D, Verschure PFMJ (2011) A computational model of thalamocortical dysrhythmia. Eur J Neurosci. Scholar
  92. Purpura KP, Schiff ND (1997) The thalamic intralaminar nuclei: role in visual awareness. Neuroscientist 3:8–14CrossRefGoogle Scholar
  93. Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysiological model of EEG spectra and evoked potentials. Biol Cybern 86:457–471PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ribary U (2005) Dynamics of thalamo-cortical network oscillations and human perception. Prog Brain Res 150:127–142PubMedCrossRefPubMedCentralGoogle Scholar
  95. Ribary U, Llinás R, Kluger A, Suk J, Ferris SH (1989) Neuropathological dynamics of magnetic, auditory, steady-state responses in Alzheimer’s disease. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New York, pp 311–314CrossRefGoogle Scholar
  96. Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinás R (1991) Magnetic Field Tomography (MFT) of coherent thalamo-cortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A 88:11037–11041PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ribary U, Cappell J, Mogilner A, Hund M, Kronberg E, Llinás R (1999) Functional imaging of plastic changes in the human brain. Adv Neurol 81:49–56PubMedPubMedCentralGoogle Scholar
  98. Ribary U, Joliot M, Miller SL, Kronberg E, Cappell J, Tallal P, Llinás R (2000) Cognitive temporal binding and its relation to 40Hz activity in humans: alteration during dyslexia. In: Aine C, Okada Y, Stroink G, Swithenby S, Wood CC (eds) Biomag96. Springer, Berlin, pp 971–974Google Scholar
  99. Ribary U, Doesburg SM, Ward LM (2014) Thalamocortical network dynamics: a framework for typical/atypical cortical oscillations and connectivity. In: Supek S, Aine CJ (eds) Magnetoencephalography – from signals to dynamic cortical networks. Springer, Heidelberg, pp 429–450Google Scholar
  100. Ribary U, Doesburg SM, Ward LM (2017a) Unified principles of thalamo-cortical processing: the neuronal switch. Biomed Eng Lett 7:229–235. Scholar
  101. Ribary U, Mackay AL, Rauscher A, Tipper CM, Giaschi D, Woodward TS, Sossi V, Doesburg SM, Ward LM, Herdman A, Hamarneh G, Booth BG, Moiseev A (2017b) Emerging neuroimaging technologies: towards future personalized diagnostics, prognosis, targeted intervention and ethical challenges. In: Illes J, Hossain S (eds) Neuroethics: anticipating the future. Oxford University Press, Oxford, pp 15–53Google Scholar
  102. Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci 18:16–25PubMedCrossRefPubMedCentralGoogle Scholar
  103. Rudolf J, Ghaemi M, Haupt WF, Szelies B, Heiss WD (1999) Cerebral glucose metabolism in acute and persistent vegetative state. J Neurosurg Anesthesiol 11:17–24PubMedCrossRefPubMedCentralGoogle Scholar
  104. Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118:237–254PubMedCrossRefGoogle Scholar
  105. Salmelin R, Service E, Kiesila P, Uutela K, Salonen O (1996) Impaired visual word processing in dyslexia revealed with magnetoencephalography. Ann Neurol 40:157–162PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sarnthein J, Jeanmonod D (2007) High thalamocortical coherence in patients with Parkinson’s disease. J Neurosci 27:124–131PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sarnthein J, Jeanmonod D (2008) High thalamocortical coherence in patients with neurogenic pain. NeuroImage 39:1910–1917PubMedCrossRefPubMedCentralGoogle Scholar
  108. Sarnthein J, Morel A, von Stein A, Jeanmonod D (2003) Thalamic theta field potentials and EEG: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders. Thalamus Relat Syst 2:231–238CrossRefGoogle Scholar
  109. Sauseng P, Klimesch W, Doppelmayr M, Hanslmayr S, Schabus M, Gruber WR (2004) Theta coupling in the human electroencephalogram during a working memory task. Neurosci Lett 354:123–126PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sauseng P, Klimesch W, Gruber WR, Birbaumer N (2008) Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage 40:308–317PubMedCrossRefPubMedCentralGoogle Scholar
  111. Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34:739–744CrossRefGoogle Scholar
  112. Schiff ND, Ribary U, Plum F, Llinás R (1999) Words without mind. J Cogn Neurosci 11:650–656PubMedCrossRefPubMedCentralGoogle Scholar
  113. Schiff ND, Ribary U, Moreno DR, Beattie B, Kronberg E, Blasberg R, Giacino J, McCagg C, Fins JJ, Llinas R, Plum F (2002) Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125:1210–1234PubMedCrossRefPubMedCentralGoogle Scholar
  114. Schiff ND, Giacimo JT, Kalmar K, Victor JD, Baker K, Gerber M et al.(2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603PubMedCrossRefPubMedCentralGoogle Scholar
  115. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schulman JJ, Ramirez RR, Zonenshayn M, Ribary U, Llinás R (2005) Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst 3:33–39CrossRefGoogle Scholar
  117. Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR (2011) Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 5:1–11CrossRefGoogle Scholar
  118. Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT Press, Cambridge, MAGoogle Scholar
  119. Simos PG, Breier JI, Fletcher JM, Bergman E, Papanicolaou AC (2000) Cerebral mechanisms involved in word reading in dyslexic children: a magnetic source imaging approach. Cereb Cortex 10:809–816PubMedPubMedCentralCrossRefGoogle Scholar
  120. Snyder AC, Foxe JJ (2010) Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J Neurosci 30:4024–4032PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42PubMedPubMedCentralCrossRefGoogle Scholar
  122. Steriade M (1993) Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems. Curr Opin Neurobiol 3:619–625PubMedCrossRefPubMedCentralGoogle Scholar
  123. Steriade M, Amzica F (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci U S A 93:2533–2538PubMedPubMedCentralCrossRefGoogle Scholar
  124. Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742PubMedCrossRefPubMedCentralGoogle Scholar
  125. Steriade M, Curro Dossi R, Pare D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A 88:4396–4400PubMedPubMedCentralCrossRefGoogle Scholar
  126. Steriade M, Curró Dossi R, Contreras D (1993a) Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic ∼40 Hz spike-bursts at ∼1000 Hz during waking and rapid-eye movement sleep. Neuroscience 56:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  127. Steriade M, McCormick DA, Sejnowski TJ (1993b) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685PubMedPubMedCentralCrossRefGoogle Scholar
  128. Supp et al.(2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tallal P (2004) Improving language and literacy is a matter of time. Nat Rev Neurosci 5:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  130. Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tallal P, Miller SL, Bedi G, Byma G, Wang X, Nagarajan SS, Schreiner C, Jenkins WM, Merzenich MM (1996) Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271:81–84PubMedCrossRefPubMedCentralGoogle Scholar
  132. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162PubMedCrossRefPubMedCentralGoogle Scholar
  133. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254PubMedCrossRefPubMedCentralGoogle Scholar
  134. Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tomassino C, Grana C, Lucignani G, Torri G, Ferrucio F (1995) Regional metabolism of comatose and vegetative state patients. J Neurosurg Anesthesiol 7:109–116CrossRefGoogle Scholar
  136. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefGoogle Scholar
  137. Victor JD, Drover JD, Conte MM, Schiff ND (2011) Mean-field modeling of thalamocortical dynamics, and a model-driven approach to EEG analysis. Proc Natl Acad Sci U S A 108:15631–15638PubMedPubMedCentralCrossRefGoogle Scholar
  138. Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinás RR (1996) Central motor loop oscillations in Parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46:1359–1370PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wang HP, Spencer D, Fellous JM, Sejnowski TJ (2010) Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328:106–109PubMedPubMedCentralCrossRefGoogle Scholar
  140. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 17:553–559CrossRefGoogle Scholar
  141. Ward LM (2011) The thalamic dynamic core theory of conscious experience. Conscious Cogn 20:464–486PubMedCrossRefPubMedCentralGoogle Scholar
  142. Ward LM (2013) The thalamus: gateway to the mind. Wiley Interdiscip Rev Cogn Sci 4:609–622. Scholar
  143. Wright JJ, Robinson PA, Rennie CJ, Gordon E, Bourke PD, Chapman CL et al.(2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63:71–88PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Urs Ribary
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • Sam M. Doesburg
    • 1
    • 2
  • Lawrence M. Ward
    • 1
    • 4
    • 5
  1. 1.Behavioral and Cognitive Neuroscience Institute (BCNI)BurnabyCanada
  2. 2.Simon Fraser University (SFU)BurnabyCanada
  3. 3.BC Children’s Hospital Research InstituteVancouverCanada
  4. 4.Department of Psychology, University of British Columbia (UBC)VancouverCanada
  5. 5.Brain Research Centre at Centre for Brain Health, University of British Columbia (UBC)VancouverCanada

Section editors and affiliations

  • Matthew J. Brookes
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance CentreSchool of Physics, University of NottinghamNottinghamUK

Personalised recommendations