Recent Developments in MEG Network Analysis

  • Arjan HillebrandEmail author
  • Cornelis J. Stam
Reference work entry


In this chapter we will describe recent developments in magnetoencephalography (MEG) network analysis, where we will focus on the rationale behind, and application in clinical cohorts, of an atlas-based beamforming approach. This approach contains three main components, namely, (i) the reconstruction of time series of neuronal activation through beamforming; (ii) the use of a standard atlas, which enables comparisons across studies and modalities; and (iii) the estimation of functional connectivity using the phase lag index (PLI), a measure that is insensitive to the effects of field spread/volume conduction. Moreover, we will discuss the use of the minimum spanning tree (MST), which allows for a bias-free characterization of the topology of the reconstructed functional networks. Application of this approach will be illustrated through examples from recent studies in patients with gliomas, Parkinson’s disease, and multiple sclerosis.


Resting state Network analysis Graph theory Minimum spanning tree Atlas-based beamformer Phase lag index (PLI) Clinical applications 


  1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedPubMedCentralGoogle Scholar
  2. Assenza S, Gutierrez R, Gomez-Gardenes J, Latora V, Boccaletti S (2011) Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci Rep 1:99PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18:14–30CrossRefGoogle Scholar
  4. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedGoogle Scholar
  5. Barnes GR, Hillebrand A (2003) Statistical flattening of MEG beamformer images. Hum Brain Mapp 18:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barnes GR, Hillebrand A, Fawcett IP, Singh KD (2004) Realistic spatial sampling for MEG beamformer images. Hum Brain Mapp 23:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, Mucha PJ (2013) Robust detection of dynamic community structure in networks. Chaos 23:013142PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boersma M, Smit DJ, Boomsma DI, De Geus EJ, Delemarre-van de Waal HA, Stam CJ (2013) Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation. Brain Connect 3:50–60PubMedCrossRefGoogle Scholar
  10. Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMedCrossRefGoogle Scholar
  11. Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A et al (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. NeuroImage 26:302–308PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST et al (2007) Beamformer reconstruction of correlated sources using a modified source model. NeuroImage 34:1454–1465PubMedCrossRefGoogle Scholar
  13. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR et al (2011a) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. NeuroImage 56:1082–1104PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC et al (2011b) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 108:16783–16788PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage 63:910–920PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349CrossRefPubMedGoogle Scholar
  19. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225PubMedPubMedCentralCrossRefGoogle Scholar
  20. Canuet L, Ishii R, Pascual-Marqui RD, Iwase M, Kurimoto R, Aoki Y et al (2011) Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS One 6:e27863PubMedPubMedCentralCrossRefGoogle Scholar
  21. Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R et al (2012) Resting-state network disruption and APOE genotype in Alzheimer’s disease: a lagged functional connectivity study. PLoS One 7:e46289PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheyne D, Bakhtazad L, Gaetz W (2006) Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. Hum Brain Mapp 27:213–229PubMedCrossRefGoogle Scholar
  23. Clune J, Mouret JB, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B Biol Sci 280:20122863CrossRefGoogle Scholar
  24. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–208CrossRefGoogle Scholar
  25. Dalal SS, Sekihara K, Nagarajan SS (2006) Modified beamformers for coherent source region suppression. IEEE Trans Biomed Eng 53:1357–1363PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT et al (2008) Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. NeuroImage 40:1686–1700PubMedPubMedCentralCrossRefGoogle Scholar
  27. de Groot M, Aronica E, Heimans JJ, Reijneveld JC (2011) Synaptic vesicle protein 2A predicts response to levetiracetam in patients with glioma. Neurology 77:532–539PubMedCrossRefGoogle Scholar
  28. de Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ (2012) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8:e1002582PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Pasquale F, Della PS, Snyder AZ, Marzetti L, Pizzella V, Romani GL et al (2012) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74:753–764PubMedPubMedCentralCrossRefGoogle Scholar
  30. Diwakar M, Tal O, Liu TT, Harrington DL, Srinivasan R, Muzzatti L et al (2011) Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer. NeuroImage 56:1918–1928PubMedCrossRefPubMedCentralGoogle Scholar
  31. Douw L, de Groot M, van Dellen E, Aronica E, Heimans JJ, Klein M et al (2013) Local MEG networks: the missing link between protein expression and epilepsy in glioma patients? NeuroImage 75:203–211CrossRefGoogle Scholar
  32. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102PubMedCrossRefGoogle Scholar
  33. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716PubMedCrossRefPubMedCentralGoogle Scholar
  34. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. NeuroImage 62:911–922PubMedCrossRefPubMedCentralGoogle Scholar
  35. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480PubMedPubMedCentralCrossRefGoogle Scholar
  36. Grodzinsky Y (2000) The neurology of syntax: language use without Broca’s area. Behav Brain Sci 23:1–21PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS et al (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63:193–203PubMedPubMedCentralCrossRefGoogle Scholar
  38. Guye M, Bartolomei F, Ranjeva JP (2008) Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol 21:393–403PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hadjipapas A, Hillebrand A, Holliday IE, Singh KD, Barnes GR (2005) Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept. Clin Neurophysiol 116:1300–1313PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head meg to activity in the adult human cortex. NeuroImage 16:638–650PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hillebrand A, Barnes GR (2003) The use of anatomical constraints with MEG beamformers. NeuroImage 20:2302–2313PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hillebrand A, Barnes GR (2005) Beamformer analysis of MEG data. Int Rev Neurobiol 68:149–171CrossRefGoogle Scholar
  44. Hillebrand A, Barnes GR (2011) Practical constraints on estimation of source extent with MEG beamformers. NeuroImage 54:2732–2740PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25:199–211PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage 59:3909–3921PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890PubMedPubMedCentralCrossRefGoogle Scholar
  48. Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104:10240–10245PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hui HB, Pantazis D, Bressler SL, Leahy RM (2010) Identifying true cortical interactions in MEG using the nulling beamformer. NeuroImage 49:3161–3174PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ioannides AA, Dimitriadis SI, Saridis GA, Voultsidou M, Poghosyan V, Liu L et al (2012) Source space analysis of event-related dynamic reorganization of brain networks. Comput Math Methods Med 2012:452503PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jackson TS, Read N (2010a) Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model. Phys Rev E Stat Nonlinear Soft Matter Phys 81:021130CrossRefGoogle Scholar
  52. Jackson TS, Read N (2010b) Theory of minimum spanning trees. II. Exact graphical methods and perturbation expansion at the percolation threshold. Phys Rev E Stat Nonlinear Soft Matter Phys 81:021131CrossRefGoogle Scholar
  53. Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC et al (1997) Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 5:238–242PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131CrossRefPubMedGoogle Scholar
  55. Lü ZL, Williamson SJ (1991) Spatial extent of coherent sensory-evoked cortical activity. Exp Brain Res 84:411–416PubMedCrossRefPubMedCentralGoogle Scholar
  56. Martino J, Honma SM, Findlay AM, Guggisberg AG, Owen JP, Kirsch HE et al (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69:521–532PubMedPubMedCentralCrossRefGoogle Scholar
  57. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Frontiers Neuroinfo 3:37CrossRefGoogle Scholar
  58. Miller DS, Bauer B, Hartz AM (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196–209PubMedPubMedCentralCrossRefGoogle Scholar
  59. Muthukumaraswamy SD, Singh KD (2011) A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power. Clin Neurophysiol 122:2324–2325PubMedCrossRefPubMedCentralGoogle Scholar
  60. Niu H, Wang J, Zhao T, Shu N, He Y (2012) Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy. PLoS One 7:e45771PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nolte G, Muller KR (2010) Localizing and estimating causal relations of interacting brain rhythms. Front Hum Neurosci 4:209PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307PubMedPubMedCentralCrossRefGoogle Scholar
  63. Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T et al (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:234101PubMedPubMedCentralCrossRefGoogle Scholar
  64. Olde Dubbelink KTE, Hillebrand A, Stoffers D, Deijen JB, Twisk JWR, Stam CJ et al (2014) Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137:197–207PubMedCrossRefPubMedCentralGoogle Scholar
  65. Pascual-Marqui RD (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv:0711.1455Google Scholar
  66. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77:1–37PubMedCrossRefGoogle Scholar
  67. Ponsen MM, Stam CJ, Bosboom JLW, Berendse HW, Hillebrand A (2013) A three dimensional anatomical view of oscillatory resting-state activity and functional connectivity in Parkinson’s disease related dementia: an MEG study using atlas-based beamforming. NeuroImage: Clin 2:95–102CrossRefGoogle Scholar
  68. Quraan MA, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatial filters in MEG. NeuroImage 49:2387–2400PubMedPubMedCentralCrossRefGoogle Scholar
  69. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331PubMedPubMedCentralCrossRefGoogle Scholar
  70. Robinson SE, Vrba J (1999) Functional Neuroimaging by Synthetic Aperture Magnetometry (SAM). In: Kotani M, Kuriki S, Karibe H, Nakasato N, Yoshimoto T (eds) Recent advances in biomagnetism. Tohoku Univ Press, Sendai, pp 302–305Google Scholar
  71. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069PubMedPubMedCentralCrossRefGoogle Scholar
  72. Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  73. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296PubMedPubMedCentralCrossRefGoogle Scholar
  74. Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865PubMedPubMedCentralCrossRefGoogle Scholar
  75. Seibert TM, Brewer JB (2011) Default network correlations analyzed on native surfaces. J Neurosci Methods 198:301–311PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sekihara K, Nagarajan SS (2008) Adaptive Spatial Filters for Electromagnetic Brain Imaging. Springer, HeidelbergGoogle Scholar
  77. Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51:1726–1734PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sekihara K, Owen JP, Trisno S, Nagarajan SS (2011) Removal of spurious coherence in MEG source-space coherence analysis. IEEE Trans Biomed Eng 58:3121–3129PubMedPubMedCentralCrossRefGoogle Scholar
  79. Shahbazi AF, Ewald A, Nolte G (2012) Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers. Comput Math Methods Med 2012:402341Google Scholar
  80. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24:49–25PubMedCrossRefGoogle Scholar
  81. Singh KD, Barnes GR, Hillebrand A, Forde EME, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. NeuroImage 16:103–114PubMedPubMedCentralCrossRefGoogle Scholar
  82. Singh KD, Barnes GR, Hillebrand A (2003) Group imaging of task-related changes in cortical synchronisation using non-parametric permutation testing. NeuroImage 19:1589–1601PubMedPubMedCentralCrossRefGoogle Scholar
  83. Smit DJ, Stam CJ, Posthuma D, Boomsma DI, De Geus EJ (2008) Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 29:1368–1378PubMedCrossRefPubMedCentralGoogle Scholar
  84. Smit DJ, Boersma M, van Beijsterveldt CE, Posthuma D, Boomsma DI, Stam CJ et al (2010) Endophenotypes in a dynamically connected brain. Behav Genet 40:167–177PubMedPubMedCentralCrossRefGoogle Scholar
  85. Smit DJ, Boersma M, Schnack HG, Micheloyannis S, Boomsma DI, Hulshoff Pol HE et al (2012) The brain matures with stronger functional connectivity and decreased randomness of its network. PLoS One 7:e36896PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425PubMedCrossRefPubMedCentralGoogle Scholar
  88. Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28PubMedPubMedCentralCrossRefGoogle Scholar
  89. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stam CJ, van Straaten EC (2012a) The organization of physiological brain networks. Clin Neurophysiol 123:1067–1087PubMedPubMedCentralCrossRefGoogle Scholar
  91. Stam CJ, van Straaten EC (2012b) Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. NeuroImage 62:1415–1428PubMedCrossRefGoogle Scholar
  92. Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193PubMedPubMedCentralCrossRefGoogle Scholar
  93. Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans Biomed Eng 40:529–540PubMedCrossRefGoogle Scholar
  94. Tarapore PE, Martino J, Guggisberg AG, Owen J, Honma SM, Findlay A et al (2012) Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 71:1012–1022PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tewarie P, Hillebrand A, Schoonheim MM, van Dijk BW, Geurts JJ, Barkhof F et al (2014) Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study. NeuroImage 88:308–318PubMedCrossRefGoogle Scholar
  96. Tian L, Wang J, Yan C, He Y (2011) Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. NeuroImage 54:191–202PubMedCrossRefGoogle Scholar
  97. Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851PubMedCrossRefGoogle Scholar
  98. Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484PubMedCrossRefGoogle Scholar
  99. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289PubMedCrossRefPubMedCentralGoogle Scholar
  100. van Dellen E, Hillebrand A, Douw L, Heimans JJ, Reijneveld JC, Stam CJ (2013) Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. NeuroImage 83:524–532PubMedCrossRefGoogle Scholar
  101. van Dellen E, Douw L, Hillebrand A, de Witt Hamer PC, Baayen JC, Heimans JJ et al (2014) Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. NeuroImage 86:354–363PubMedCrossRefPubMedCentralGoogle Scholar
  102. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534PubMedCrossRefGoogle Scholar
  103. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786PubMedPubMedCentralCrossRefGoogle Scholar
  104. van den Heuvel MP, Kahn RS, Goni J, Sporns O (2012) High-cost, high-capacity backbone for global brain communication. Proc Natl Acad Sci U S A 109:11372–11377PubMedPubMedCentralCrossRefGoogle Scholar
  105. van Mieghem P, Magdalena SM (2005) Phase transition in the link weight structure of networks. Phys Rev E Stat Nonlinear Soft Matter Phys 72:056138CrossRefGoogle Scholar
  106. van Mieghem P, van Langen S (2005) Influence of the link weight structure on the shortest path. Phys Rev E Stat Nonlinear Soft Matter Phys 71:056113CrossRefGoogle Scholar
  107. van Straaten EC, Stam CJ (2013) Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 23:7–18PubMedCrossRefGoogle Scholar
  108. van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880PubMedCrossRefGoogle Scholar
  109. van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5:e13701PubMedPubMedCentralCrossRefGoogle Scholar
  110. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefGoogle Scholar
  111. Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 55:1548–1565PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vrba J (2002) Magnetoencephalography: the art of finding a needle in a haystack. Physica C 368:1–9CrossRefGoogle Scholar
  113. Wang H, Hernandez JM, van Mieghem P (2008) Betweenness centrality in a weighted network. Phys Rev E Stat Nonlinear Soft Matter Phys 77:046105CrossRefGoogle Scholar
  114. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefGoogle Scholar
  115. Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44:947–966PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands

Section editors and affiliations

  • Matthew J. Brookes
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance CentreSchool of Physics, University of NottinghamNottinghamUK

Personalised recommendations