Risks and Assets Pricing

  • Charles TapieroEmail author
Part of the Springer Handbooks book series (SHB)


This chapter introduces the basic elements of risk and financial assets pricing. Asset pricing is considered in two essential situations, complete and incomplete markets, and the definition and use of a number of essential financial instruments is described. Specifically, stocks (as underlying processes), bonds and derivative products (and in particular call and put European and American options) are considered. The intent of the chapter is neither to cover all the many techniques and approaches that are used in asset pricing, nor to provide a complete introduction to financial asset pricing and financial engineering. Rather, the intent of the chapter is to outline through applications and problems the essential mathematical techniques and financial economic concepts used to assess the value of risky assets. An extensive set of references is also included to direct the motivated reader to further and extensive research in this broad and evolving domain of economic and financial engineering and mathematics that deals with asset pricing. The first part of the chapter (The Introduction and Sect. 47.1) deals with a definition of risk and outlines the basic terminology used in asset pricing. Further, some essential elements of the Arrow–Debreu framework that underlies the fundamental economic approach to asset pricing are introduced. A second part (Sect. 47.2), develops the concepts of risk-neutral pricing, no arbitrage and complete markets. A number of examples are used to demonstrate how we can determine a probability measure to which risk-neutral pricing can be applied to value assets when markets are complete. In this section, a distinction between complete and incomplete markets is also introduced. Sections 47.3, 47.4 and 47.5 provide an introduction to and examples of basic financial approaches and instruments. First, Sect. 47.3, outlines the basic elements of the consumption capital asset-pricing model (with the CAPM stated as a special case). Section 47.4 introduces the basic elements of net present value and bonds, calculating the yield curve as well as the term structure of interest rates and provides a brief discussion of default and rated bonds. Section 47.5 is a traditional approach to pricing of options using the risk-neutral approach (for complete markets). European and American options are considered and priced by using a number of examples. The Black–Scholes model is introduced and solved, and extensions to option pricing with stochastic volatility, underlying stock prices with jumps as well as options on bonds are introduced and solved for specific examples. The last section of the chapter focuses on incomplete markets and an outline of techniques that are used in pricing assets when markets are incomplete. In particular, the following problems are considered: the pricing of rated bonds (whether they are default-prone or not), engineered risk-neutral pricing (based on data regarding options or other derivatives) and finally we also introduce the maximum-entropy approach for calculating an approximate risk-neutral distribution.


Cash Flow Asset Price Option Price Stochastic Volatility Implied Volatility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Data mining


  1. 47.1.
    C. S. Tapiero: Risk and Financial Management: Mathematical and Computationl Concepts (Wiley, London, March 2005)Google Scholar
  2. 47.2.
    C. S. Tapiero: Risk management. In: Encyclopedia on Actuarial and Risk Management, ed. by E. J. Teugels, B. Sundt (Wiley, New York, London 2004)Google Scholar
  3. 47.3.
    P. Artzner, F. Delbaen, J. M. Eberand, D. Heath: Thinking coherently, RISK 10, 68–71 (1997)Google Scholar
  4. 47.4.
    P. Artzner: Application of coherent measures to capital requirements in insurance, North Am. Actuar. J. 3(2), 11–25 (1999)MathSciNetzbMATHGoogle Scholar
  5. 47.5.
    P. Artzner, F. Delbaen, J. M. Eber, D. Heath: Coherent risk measure, Math. Finance 9, 203–228 (1999)MathSciNetzbMATHGoogle Scholar
  6. 47.6.
    H. Raiffa, R. Schlaiffer: Applied Statistical Decision Theory (Division of Research, Graduate School of Business, Harvard University, Boston 1961)Google Scholar
  7. 47.7.
    C. Alexander: Risk Management and Analysis, Vol. 1, 2 (Wiley, New York 1998)Google Scholar
  8. 47.8.
    F. Basi, P. Embrechts, M. Kafetzaki: Risk management and quantile estimation. In: Practical Guide to Heavy Tails, ed. by R. Adler, R. Feldman, M. Taqqu (Birkhauser, Boston 1998) pp. 111–130Google Scholar
  9. 47.9.
    S. Beckers: A survey of risk measurement theory and practice. In: Handbook of Risk Management and Analysis, ed. by C. Alexander (Wiley, New York 1996)Google Scholar
  10. 47.10.
    P. P. Boyle: Options and the Management of Financial Risk (Society of Actuaries, New York 1992)Google Scholar
  11. 47.11.
    Neil A. Doherty: Integrated Risk Management: Techniques and Strategies for Managing Corporate Risk (McGraw–Hill, New York 2000)Google Scholar
  12. 47.12.
    J. E. Ingersoll, Jr.: Theory of Financial Decision Making (Rowman and Littlefield, New Jersey 1987)Google Scholar
  13. 47.13.
    P. Jorion: Value at Risk: The New Benchmark for Controlling Market Risk (McGraw–Hill, Chicago 1997)Google Scholar
  14. 47.14.
    P. Embrechts, C. Klupperberg, T. Mikosch: Modelling Extremal Events in Insurance and Finance (Springer, Berlin Heidelberg New York 1997)Google Scholar
  15. 47.15.
    C. Gourieroux, J. P. Laurent, O. Scaillet: Sensitivity analysis of values at risk, J. Empirical Finance 7, 225–245 (2000)Google Scholar
  16. 47.16.
    S. Basak, A. Shapiro: Value-at-risk-based risk management: Optimal policies and asset prices, Rev. Financial Stud. 14, 371–405 (2001)Google Scholar
  17. 47.17.
    D. E. Bell: Risk, return and utility, Manage. Sci. 41, 23–30 (1995)zbMATHGoogle Scholar
  18. 47.18.
    Eugene F. Fama: The cross-section of expected stock returns, J. Finance 47, 427–465 (1992)Google Scholar
  19. 47.19.
    K. J. Arrow: Aspects of the theory of risk bearing, YRJO Jahnsson Lectures (1963), also in 1971 Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, IllGoogle Scholar
  20. 47.20.
    J. Y. Campbell: Asset pricing at the Millennium, J. Finance LV, 4, 1515–1567 (2000)Google Scholar
  21. 47.21.
    J. C. Cox, S. A. Ross: A survey of some new results in financial option pricing theory, J. Finance 31, 383–402 (1978)Google Scholar
  22. 47.22.
    D. Duffie: Security Markets: Stochastic Models (Academic, New York 1988)zbMATHGoogle Scholar
  23. 47.23.
    D. Duffie: Dynamic Asset Pricing Survey (Working Paper, Stanford University 2002)Google Scholar
  24. 47.24.
    R. C. Merton: Continuous Time Finance (M. A. Blackwell, Cambridge 1990)Google Scholar
  25. 47.25.
    R. A. Jarrow: Finance Theory (Prentice Hall, Englewood Cliffs, N.J. 1988)Google Scholar
  26. 47.26.
    J. M. Bismut: Growth and intertemporal allocation of risks, J. Econ. Theory 10, 239–257 (1975)MathSciNetGoogle Scholar
  27. 47.27.
    J. M. Bismut: An introductory approach to duality in optimal stochastic control, SIAM Rev. 20, 62–78 (1978)MathSciNetzbMATHGoogle Scholar
  28. 47.28.
    W. A. Brock, M. J. P. Magill: Dynamics under uncertainty, Econometrica 47, 843–868 (1979)MathSciNetzbMATHGoogle Scholar
  29. 47.29.
    J. B. Caouette, E. I. Altman, P. Narayanan: Managing Credit Risk: The Next Great Financial Challenge (Wiley, New York 1998)Google Scholar
  30. 47.30.
    D. Cossin, H. Pirotte: Advanced Credit Risk Analysis: Financial Approaches and Mathematical Models to Assess, Price and Manage Credit Risk (Wiley, New York 2001)Google Scholar
  31. 47.31.
    J. Cox, M. Rubinstein: Options Markets (Prentice Hall, Englewood Cliffs, N. J. 1985)Google Scholar
  32. 47.32.
    J. C. Hull: Options, Futures and Other Derivatives, 4th edn. (Prentice Hall, Englewood Cliffs, N. J. 2000)Google Scholar
  33. 47.33.
    A. G. Malliaris, W. A. Brock: Stochastic methods in Economics and Finance (North Holland, Amsterdam 1982)Google Scholar
  34. 47.34.
    Harry M. Markowitz: Portfolio Selection; Efficient Diversification of Investments (Wiley, New York 1959)Google Scholar
  35. 47.35.
    Y. A. Bergman: Time preference and capital asset pricing models, J. Financial Econ. 14, 145–159 (1985)Google Scholar
  36. 47.36.
    R. S. Dembo: Scenario optimization, Algorithmics Inc. Research Paper 89(01) (1989)Google Scholar
  37. 47.37.
    R. S. Dembo: Scenario immunization. In: Financial Optimization, ed. by S. A. Zenios (Cambridge Univ. Press, London 1993)Google Scholar
  38. 47.38.
    D. Kreps: A representation theorem for preference for flexibility, Econometrica 47, 565–577 (1979)MathSciNetzbMATHGoogle Scholar
  39. 47.39.
    J. M. Harrison, S. R. Pliska: Martingales and stochastic integrals with theory of continuous trading, Stoch. Proc. Appl. 11, 261–271 (1981)MathSciNetGoogle Scholar
  40. 47.40.
    I. Karatzas, S. E. Shreve: Methods of mathematical finance (Springer, New York 1998)zbMATHGoogle Scholar
  41. 47.41.
    I. Karatzas, S. Shreve: Methods of mathematical finance, Stochastic Modelling and Applied Probability, 159-196 (1999)Google Scholar
  42. 47.42.
    D. R. Cox, H. D. Miller: The Theory of Stochastic Processes (Wiley, New York 1965)zbMATHGoogle Scholar
  43. 47.43.
    H. U. Gerber: An Introduction to Mathematical Risk Theory (University of Penn., Philadelphia 1979) Monograph No. 8, Huebner FoundationzbMATHGoogle Scholar
  44. 47.44.
    S. M. Ross: Applied Probability Models with Optimization Applications (Holden-Day, San Fransisco 1970)zbMATHGoogle Scholar
  45. 47.45.
    S. M. Ross: Stochastic Processes (Wiley, New York 1982)Google Scholar
  46. 47.46.
    S. M. Ross: Introduction to Stochastic Dynamic Programming (Academic, New York 1983)zbMATHGoogle Scholar
  47. 47.47.
    C. S. Tapiero: Applied Stochastic Models and Control in Management (North Holland, New York 1988)zbMATHGoogle Scholar
  48. 47.48.
    C. S. Tapiero: Applied Stochastic Control for Finance and Insurance (Kluwer, Dordrecht 1998)zbMATHGoogle Scholar
  49. 47.49.
    K. J. Arrow: Le role des valeurs boursieres pour la repartition la meilleur des risques, Econometric, Colloquia International due CNRS 40, 41–47 (1953), in English in The role of securities in the optimal allocation of risk bearing, Review of Economic Studies, 31, 91-96, 1963MathSciNetGoogle Scholar
  50. 47.50.
    D. Duffie: Dynamic Asset Pricing Theory (Princeton University Press, Princeton, New Jersey 1992)Google Scholar
  51. 47.51.
    J. Muth: Rational expectations and the theory of price movements, Econometrica 29, 315–335 (1961)Google Scholar
  52. 47.52.
    M. Magill, M. Quinzii: Theory of Incomplete Markets, Vol. 1 (MIT Press, Boston 1996)Google Scholar
  53. 47.53.
    E. F. Fama: Efficient capital markets: A review of theory and empirical work, J. Finance 25, 383–417 (1970)Google Scholar
  54. 47.54.
    R. E. Lucas: Asset prices in an exchange economy, Econometrica 46, 1429–1445 (1978)MathSciNetzbMATHGoogle Scholar
  55. 47.55.
    J. M. Harrison, D. M. Kreps: Martingales and arbitrage in multiperiod security markets, J. Econ. Theory (1979)Google Scholar
  56. 47.56.
    R. M. Capocelli, L. M. Ricciardi: On the inverse of the first passage time probability problem, J. Appl. Probab. 9, 270–287 (1972)MathSciNetzbMATHGoogle Scholar
  57. 47.57.
    T. J. Sargent: Macroeconomic Theory (Academic, New York 1979)zbMATHGoogle Scholar
  58. 47.58.
    A. Bensoussan, J. L. Lions: Controle Impulsionnel et Inequations Quasi-Variationnelles (Dunod, Paris 1979)Google Scholar
  59. 47.59.
    A. Bensoussan, C. S. Tapiero: Impulsive control in management: Prospects and applications, J. Optim. Theory Appl. 37, 419–442 (1982)MathSciNetzbMATHGoogle Scholar
  60. 47.60.
    D. A. Darling, A. J. F. Siegert: The first passage time for a continuous Markov process, Ann. Math. Stat. 24, 624–639 (1953)MathSciNetzbMATHGoogle Scholar
  61. 47.61.
    W. F. Sharpe: Capital asset prices: A theory of market equilibrium under risk, J. Finance 19, 425–442 (1964)Google Scholar
  62. 47.62.
    E. F. Fama, M. H. Miller: The Theory of Finance (Holt Rinehart and Winston, New York 1972)Google Scholar
  63. 47.63.
    E. F. Fama: The CAPM is wanted, dead or alive, J. Finance 51, 1947 (Dec 1996)Google Scholar
  64. 47.64.
    C. Stein: Estimation of the mean of a multivariate normal distributions, Proc. Prague Symposium, Asymptotic Statistics (September 1973)Google Scholar
  65. 47.65.
    R. Roll: Asset, money and commodity price inflation under uncertainty, J. Money Credit Banking 5, 903–923 (1973)Google Scholar
  66. 47.66.
    R. J. B. Wets, S. Bianchi, L. Yang: Serious Zero-Curve, (2002) www.episolutions.comGoogle Scholar
  67. 47.67.
    K. C. Chan, G. A. Karolyi, F. A. Longstaff, A. B. Sanders: An empirical comparison of alternative models of the short term interest rate, J. Finance 47, 1209–1227 (1992)Google Scholar
  68. 47.68.
    J. D. Duffie, R. Kan: A yield-factor model of interest rates, Math. Finance 6, 379–406 (1996)zbMATHGoogle Scholar
  69. 47.69.
    D. C. Heath, R. A. Jarrow, A. Morton: Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation, Econometrica 60, 77–105 (1992)zbMATHGoogle Scholar
  70. 47.70.
    C. R. Nelson, A. F. Siegel: Parsimonious modeling of the yield curve, J. Bus. 60, 473–489 (1987)Google Scholar
  71. 47.71.
    D. Filipovic: A note on the Nelson–Siegel family, Math. Finance 9, 349–359 (1999)MathSciNetzbMATHGoogle Scholar
  72. 47.72.
    D. Filipovic: Exponential-ploynomial families and the term structure of interest rates, Bernoulli 6, 1–27 (2000)MathSciNetGoogle Scholar
  73. 47.73.
    D. Filipovic: Consistency problems for Heath–Jarrow–Morton interest rate models. In: Lecture Notes in Mathematics, Vol. 1760, ed. by J.-M. Morel, F. Takens, B. Teissier (Springer, Berlin Heidelberg New York 2001)Google Scholar
  74. 47.74.
    R. C. Merton: On the pricing of corporate debt: The risk structure of interest rates, J. Finance 29, 449–470 (1974)Google Scholar
  75. 47.75.
    G. R. Duffee: The relation between treasury yields and corporate bond yield spreads, J. Finance 53, 2225–2241 (1998)Google Scholar
  76. 47.76.
    G. R. Duffee: Estimating the price of default risk, Rev. Financial Stud. 12, 197–226 (1999)Google Scholar
  77. 47.77.
    D. Duffie, K. Singleton: An econometric model of the term structure of interest rate wap yield, J. Finance 52, 1287–1321 (1997)Google Scholar
  78. 47.78.
    D. Duffie, K. Singleton: Modeling term structures of defaultable bonds, Review Financial Stud. 12, 687–720 (1999)Google Scholar
  79. 47.79.
    E. Elton, M. J. Gruber, D. Agrawal, C. Mann: Explaining the rate spread on corporate bonds, J. Finance 56, 247–278 (2001)Google Scholar
  80. 47.80.
    K. O. Kortanek, V. G. Medvedev: Building and Using Dynamic Interest Rate Models (Wiley Finance. John Wiley & Sons Ltd., London 2001)zbMATHGoogle Scholar
  81. 47.81.
    K. O. Kortanek: Comparing the Kortanek & Medvedev GP approach with the recent wets approach for extracting the zeros (April 26, 2003)Google Scholar
  82. 47.82.
    F. Delbaen, S. Lorimier: Estimation of the yield curve and forward rate curve starting from a finite number of observations, Insurance: Math. Econ. 11, 249–258 (1992)Google Scholar
  83. 47.83.
    K. J. Adams, D. R. Van Deventer: Fitting yield curves and forward rate curves with maximum smoothness, J. Fixed Income, 52-62 (1994)Google Scholar
  84. 47.84.
    M. Buono, R. B. Gregoru-Allen, U. Yaari: The efficacy of term structure estimation techniques: A Monte Carlo study, J. Fixed Income 1, 52–59 (1992)Google Scholar
  85. 47.85.
    O. A. Vasicek, H. G. Fong: Term structure modeling using exponential splines, J. Finance 37, 339–356 (1977)Google Scholar
  86. 47.86.
    G. S. Shea: Term structure estimation with exponential splines, J. Finance 40, 339–356 (1988)Google Scholar
  87. 47.87.
    M. Friedman, L. J. Savage: The utility analysis of choices involving risk, J. Polit. Econ. 56 (August 1948)Google Scholar
  88. 47.88.
    M. J. Brennan, E. S. Schwartz: A continuous time approach to the pricing of corporate bonds, J. Banking Finance 3, 133–155 (1979)Google Scholar
  89. 47.89.
    J. D. Duffie, D. Fillipovic, W. Schachermayer: Affine processes and applications in finance, Ann. Appl. Probab. 13, 19–49 (2003)Google Scholar
  90. 47.90.
    J. Hull, A. White: The pricing of options on assets with stochastic volatilitie, J. Finance 42, 281–300 (1987)Google Scholar
  91. 47.91.
    J. C. Cox, J. E. Ingersoll, S. A. Ross: A theory of the term structure of interest rates, Econometrica 53, 385–407 (1985)MathSciNetGoogle Scholar
  92. 47.92.
    R. Jarrow, S. Turnbull: Pricing derivatives on financial securities subject to credit risk, J. Finance 50, 53–86 (1995)Google Scholar
  93. 47.93.
    R. A. Jarrow, D. Lando, S. Turnbull: A Markov model for the term structure of credit spreads, Rev. Financial Stud. 10, 481–523 (1997)Google Scholar
  94. 47.94.
    D. Lando: Some elements of rating-based credit risk modeling. In: Advanced Fixed-Income Valuation Tools, ed. by N. Jegadeesh, B. Tuckman (Wiley, New York 2000)Google Scholar
  95. 47.95.
    F. Longstaff, E. Schwartz: A simple approach to valuing risky fixed and floating rate debt, J. Finance 50, 789–819 (1995)Google Scholar
  96. 47.96.
    O. A. Vasicek: An equilibrium characterization of the term structure, J. Financial Econ. 5, 177–188 (1977)Google Scholar
  97. 47.97.
    F. Black, M. Scholes: The pricing of options and corporate liabilities, J. Polit. Econ. 81, 637–659 (1973)Google Scholar
  98. 47.98.
    M. J. Brennan: The pricing of contingent claims in discrete time models, The J. Finance 1, 53–63 (1979)MathSciNetGoogle Scholar
  99. 47.99.
    J. C. Cox, M. Rubenstein: Options Markets (Prentice Hall, Englewood Cliffs, N. J. 1985)Google Scholar
  100. 47.100.
    J. C. Cox, J.E. Ingersoll jr., S. A. Ross: The relation between forward prices and futures prices, J. Financial Econ. 9, 321–346 (1981)Google Scholar
  101. 47.101.
    J. C. Cox, S. A. Ross, M. Rubenstein: Option pricing approach, J. Financial Econ. 7, 229–263 (1979)zbMATHGoogle Scholar
  102. 47.102.
    R. C. Merton: Theory of rational option pricing, Bell J. Econ. Manage. Sci. 4, 141–183 (1973)MathSciNetGoogle Scholar
  103. 47.103.
    S. Pliska: A stochastic calculus model of continuous trading: Optimal portfolios, Math. Oper. Res. 11, 371–382 (1986)MathSciNetGoogle Scholar
  104. 47.104.
    S. A. Ross: Options and efficiency, Quarterly J. Econ. 90 (1976)Google Scholar
  105. 47.105.
    A. Ross: The arbitrage theory of capital asset pricing, J. Econ. Theory 13, 341–360 (1976)Google Scholar
  106. 47.106.
    C. W. Smith: Option pricing: A review, J. Financial Econ. 3, 3–51 (1976)Google Scholar
  107. 47.107.
    M. Avellenada: Course Notes (Courant Institue of Mathematics, New York University, New York 2001)Google Scholar
  108. 47.108.
    J. C. Cox, S. A. Ross: The valuation of options for alternative stochastic processes, J. Financial Econ., 145-166 (1976)Google Scholar
  109. 47.109.
    A. Bensoussan: Stochastic Control by Functional Analysis Method (North Holland, Amsterdam 1982)Google Scholar
  110. 47.110.
    A. Bensoussan, M. Hazewinkel (Ed.): On the theory of option pricing, ACTA Applicandae Mathematica 2(2), 139–158 (1984)Google Scholar
  111. 47.111.
    P. Carr, R. Jarrow, R. Myneni: Alternative characterizations of American Put options, Math. Finance 2, 87–106 (1992)zbMATHGoogle Scholar
  112. 47.112.
    R. Jarrow, A. Rudd: Approximate option valuation for arbitrary stochastic processes, J. Financial Econ. 10, 347–369 (1982)Google Scholar
  113. 47.113.
    A. Bensoussan, H. Julien: Option pricing, in a market with friction. In: Stochastic Analysis and Applications (1998)Google Scholar
  114. 47.114.
    A. Bensoussan, H. Julien: On the pricing of contingent claims with friction, Math. Finance 10, 89–108 (2000)MathSciNetzbMATHGoogle Scholar
  115. 47.115.
    S. D. Jacka: Optimal stopping and the American Put, J. Math. Finance 1, 1–14 (1991)zbMATHGoogle Scholar
  116. 47.116.
    J. Wiggins: Option values under stochastic volatility: Theory and empirical estimates, J. Financial Econ. 5, 351–372 (1987)Google Scholar
  117. 47.117.
    J. P. Fouque, G. Papanicolaou, K. R. Sircar: Stochastic Volatility (Cambridge Univ. Press, Cambridge 2000)zbMATHGoogle Scholar
  118. 47.118.
    K. Ramaswamy, D. Nelson: Simple binomial processes as diffusion approximations in financial models, Rev. Financial Stud. 3(3), 393–430 (1990)Google Scholar
  119. 47.119.
    J. P. Bouchaud, M. Potters: Théorie des Risques Financiers (Aléa-Saclay/Eyrolles, Paris 1997)Google Scholar
  120. 47.120.
    B. Dupire: Pricing with a smile, RISK (January 1994)Google Scholar
  121. 47.121.
    R. Merton: Option pricing when underlying stock returns are discontinuous, J. Financial Econ. 3, 125–144 (1976)zbMATHGoogle Scholar
  122. 47.122.
    C. Ball, W. Torous: On jumps in common stock prices and their impact on call option price, J. Finance 40, 155–173 (1985)Google Scholar
  123. 47.123.
    H. Cho, K. Lee: An extension of the three jump process models for contingent claim valuation, J. Derivatives 3, 102–108 (1995)Google Scholar
  124. 47.124.
    V. Naik, M. Lee: General equilibrium pricing of options on the market portfolio with discontinuous returns, Rev. Financial Stud. 3, 493–521 (1990)Google Scholar
  125. 47.125.
    K. Amin: Jump diffusion option valuation in discrete time, J. Finance 48, 1833–1863 (1993)Google Scholar
  126. 47.126.
    K. I. Amin, V. K. Ng: Option valuation with systematic stochastic volatility, J. Finance 48, 881–909 (1993)Google Scholar
  127. 47.127.
    D. E. Bell: Regret in decision making under uncertainty, Oper. Res. 30, 961–981 (1982)zbMATHGoogle Scholar
  128. 47.128.
    D. E. Bell: Disappointment in decision making under uncertainty, Oper. Res. 33, 1–27 (1985)MathSciNetGoogle Scholar
  129. 47.129.
    P. C. Fishburn: Nonlinear Preference and Utility Theory (Johns Hopkins, Baltimore 1988)zbMATHGoogle Scholar
  130. 47.130.
    F. Gul: A theory of disappointment aversion, Econometrica 59, 667–686 (1991)MathSciNetzbMATHGoogle Scholar
  131. 47.131.
    G. Loomes, R. Sugden: Regret theory: An alternative to rational choice under uncertainty, Econ. J. 92, 805–824 (1982)Google Scholar
  132. 47.132.
    G. Loomes, R. Sugden: Some implications of a more general form of regret theory, J. Econ. Theory 41, 270–287 (1987)MathSciNetzbMATHGoogle Scholar
  133. 47.133.
    M. J. Machina: Choice under uncertainty: Problems solved and unsolved, J. Econ. Perspect. 1, 121–154 (1987)Google Scholar
  134. 47.134.
    R. Sugden: An axiomatic foundation of regret theory, J. Econ. Theory 60, 150–180 (1993)MathSciNetGoogle Scholar
  135. 47.135.
    K. J. Arrow: Risk perception in psychology and in economics, Econ. Inquiry 20(1), 1–9 (January 1982)MathSciNetGoogle Scholar
  136. 47.136.
    M. Allais: Le comportement de lʼhomme rationnel devant le risque: Critique des postulats et axiomes de lʼecole americaine, Econometrica 21, 503–546 (1953)MathSciNetzbMATHGoogle Scholar
  137. 47.137.
    M. Allais: The foundations of a positive theory of choice involving risk and a criticism of the postulates and axioms of the American school. In: Expected Utility Hypothesis and the Allais Paradox, ed. by M. Allais, O. Hagen (Reidel, Dordrecht 1979)Google Scholar
  138. 47.138.
    D. Ellsberg: Risk, ambuguity and the Savage axioms, Q. J. Econ. 75(4), 643–669 (November 1961)Google Scholar
  139. 47.139.
    M. Friedman, L. J. Savage: The expected utility hypothesis and the measurability of utility, J. Polit. Econ. 60(6), 463–486 (December 1952)Google Scholar
  140. 47.140.
    M. Rabin: Psychology and economics, J. Econ. Lit. 36, 11–46 (1998)Google Scholar
  141. 47.141.
    M. J. Machina: Expected utility analysis without the independence axiom, Econometrica 50(2), 277–323 (March 1982)MathSciNetzbMATHGoogle Scholar
  142. 47.142.
    D. Kahnemann, A. Tversky: Prospect theory: An analysis of decision under risk, Econometrica 47(2), 263–292 (March 1979)Google Scholar
  143. 47.143.
    J. Hirschleifer: Where are we in the theory of information, Am. Econ. Rev. 63, 31–39 (1970)Google Scholar
  144. 47.144.
    J. Hirschleifer, J. G. Riley: The analysis of uncertainty and information: An expository survey, J. Econ. Lit. 17, 1375–1421 (1979)Google Scholar
  145. 47.145.
    G. Akerlof: The market for lemons: Quality uncertainty and the market mechanism, Quarter. J. Econ. 84, 488–500 (1970)Google Scholar
  146. 47.146.
    B. Holmstrom: Moral hazard and observability, Bell J. Econ. 10(1), 74–91 (1979)Google Scholar
  147. 47.147.
    E. E. Peter: Chaos and Order in Capital Markets (Wiley, New York 1995)Google Scholar
  148. 47.148.
    R. E. Kalman: Randomness reexamined, Modeling Identif. Control 15(3), 141–151 (1994)MathSciNetzbMATHGoogle Scholar
  149. 47.149.
    M. Born: Nobel lecture. In: Les Prix Nobel (Nobel Foundation, Stockholm 1954)Google Scholar
  150. 47.150.
    J. Beran: Statistics for Long-Memory Processes (Chapman Hall, London 1994)zbMATHGoogle Scholar
  151. 47.151.
    S. C. Blank: ‘Chaos’ in futures markets? A nonlinear dynamical analysis, J. Futures Markets 11, 711–728 (1991)Google Scholar
  152. 47.152.
    W. A. Brock, D. A. Hsieh, D. LeBaron: Nonlinear Dynamics, Chaos and Instability: Statistical Theory and Economic Evidence (MIT Press, Cambridge, Mass 1991)Google Scholar
  153. 47.153.
    W. A. Brock, P. J. de Lima: Nonlinear time series, complexity theory and finance. In: Statistical Methods in Finance, Handbook of Statistics, Vol. 14, ed. by G. Maddala, C. Rao (North Holland, Amsterdam 1996)Google Scholar
  154. 47.154.
    D. A. Hsieh: Chaos and nonlinear dynamics application to financial markets, J. Finance 46, 1839–77 (1991)Google Scholar
  155. 47.155.
    B. LeBaron: Chaos and nonlinear forecastability in economics and finance, Phil. Trans. R. Soc. London A 348, 397–404 (1994)MathSciNetGoogle Scholar
  156. 47.156.
    J. A. Scheinkman, B. LeBaron: Nonlinear dynamics and stock returns, J. Bus. 62, 311–337 (1989)Google Scholar
  157. 47.157.
    J. A. Scheinkman: Nonlinear dynamics in economics and finance, Phil. Trans. R. Soc. London 346, 235–250 (1994)MathSciNetzbMATHGoogle Scholar
  158. 47.158.
    J. P. Imhoff: On the range of Brownian motion and its inverse process, Ann. Prob. 13(3), 1011–1017 (1985)Google Scholar
  159. 47.159.
    B. Mandelbrot: Statistical methodology for non-periodic cycles: From the covariance to R/S analysis, Ann. Econ. Social Measure 1, 259–290 (1972)Google Scholar
  160. 47.160.
    B. Mandelbrot, J. Van Ness: Fractional Brownian motion, fractional noises and applications, SIAM Rev. 10, 422–437 (1968)MathSciNetzbMATHGoogle Scholar
  161. 47.161.
    B. Mandelbrot, M. Taqqu: Robust R/S analysis of long run serial correlation, Bull. Int. Stat. Inst. 48(Book 2), 59–104 (1979)MathSciNetGoogle Scholar
  162. 47.162.
    M. T. Green, B. Fielitz: Long term dependence in common stock returns, J. Financial Econ. 4, 339–349 (1977)Google Scholar
  163. 47.163.
    D. R. Cox: Long range dependence, nonlinearity and time irreversibilit, J. Time Series Anal. 12(4), 329–335 (1991)zbMATHGoogle Scholar
  164. 47.164.
    M. Frank, T. Stengos: Chaotic dynamics in economic time serie, J. Econ. Surveys 2, 103–133 (1988)Google Scholar
  165. 47.165.
    M. T. Green, B. Fielitz: Long term dependence and least squares regression in investment analysis, Manage. Sci. 26(10), 1031–1038 (October 1980)Google Scholar
  166. 47.166.
    H. E. Hurst: Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 770-808 (1951)Google Scholar
  167. 47.167.
    J. P. Imhoff: A construction of the Brownian motion path from BES (3) pieces, Stoch. Processes Appl. 43, 345–353 (1992)Google Scholar
  168. 47.168.
    M. S. Taqqu: A bibliographical guide to self similar processes and long range dependence. In: Dependence in Probability and Statistics, ed. by E. Eberlein, M. S. Taqqu (Birkhuser, Boston 1986) pp. 137–165Google Scholar
  169. 47.169.
    B. Mandelbrot: When can price be arbitraged efficiently? A limit to the the validity of the random walk and Martingale models, Rev. Econ. Stat. 53, 225–236 (1971)MathSciNetGoogle Scholar
  170. 47.170.
    A. W. Lo: Long term memory in stock market prices, Econometrica 59, 1279–1313 (5, September 1992)Google Scholar
  171. 47.171.
    Andrew W. Lo: Fat tails, long memory and the stock market since 1960ʼs, Econ. Notes 26, 213–245 (1997)Google Scholar
  172. 47.172.
    T. H. Otway: Records of the Florentine proveditori degli cambiatori: An example of an antipersistent time series in economics, Chaos Solitons Fractals 5, 103–107 (1995)zbMATHGoogle Scholar
  173. 47.173.
    G. Booth, F. Kaen, P. Koveos: R/S analysis of foreign exchange rates under two international monetary regimes, J. Monetary Econ 10, 4076415 (1982)Google Scholar
  174. 47.174.
    F. Diebold, G. Rudebusch: Long memory and persistence in aggregate output, J. Monetary Econ. 24, 189–209 (1989)Google Scholar
  175. 47.175.
    F. Diebold, G. Rudebusch: On the power of the Dickey-Fuller test against fractional alternative, Econ. Lett. 35, 155–160 (1991)MathSciNetGoogle Scholar
  176. 47.176.
    H. G. Fung, W. C. Lo: Memory in interest rate futures, J. Futures Markets 13, 865–873 (1993)Google Scholar
  177. 47.177.
    Y. W. Cheung: Long memory in foreign exchange rate, J. Bus. Econ. Stat. 11, 93–101 (1993)Google Scholar
  178. 47.178.
    H. G. Fung, W. C. Lo, John E. Peterson: Examining the dependency in intra-day stock index futures, J. Futures Markets 14, 405–419 (1994)Google Scholar
  179. 47.179.
    P. Vallois: On the range process of a Bernoulli random walk. In: Proceedings of the Sixth International Symposium on Applied Stochastic Models and Data Analysis, Vol. 2, ed. by J. Janssen, C. H. Skiadas (World Scientific, Singapore 1995) pp. 1020–1031Google Scholar
  180. 47.180.
    P. Vallois: The range of a simple random walk on Z, Adv. Appl. Prob. 28, 1014–1033 (1996)MathSciNetzbMATHGoogle Scholar
  181. 47.181.
    P. Vallois, C. S. Tapiero: The range process in random walks: Theoretical results and applications. In: Adv. Comput. Econ., ed. by H. Ammans, B. Rustem, A. Whinston (Kluwer Publications, Dordrecht 1996)Google Scholar
  182. 47.182.
    P. Vallois, C. S. Tapiero: Run length statistics and the Hurst exponent in random and birth-death random walk, Chaos Solutions Fractals 7(9), 1333–1341 (September 1996)MathSciNetzbMATHGoogle Scholar
  183. 47.183.
    P. Vallois, C. S. Tapiero: The inter-event range process in birth death random walks, Appl. Stoch. Models Bus. Ind. 17(3), 231–306 (2001)MathSciNetGoogle Scholar
  184. 47.184.
    C. S. Tapiero, P. Vallois: Range reliability in random walks, Math. Methods Oper. Res. 45, 325–345 (1997)MathSciNetzbMATHGoogle Scholar
  185. 47.185.
    Y. Ait-Sahalia, A. Lo: Nonparametric estimation of state price densities implicit in finncial asset prices, NBER, Working Paper No. 5351 (1995)Google Scholar
  186. 47.186.
    B. Bahra: Implied risk neutral probability density functions from prices, Bank of England, Working Paper No. 66 (1997)Google Scholar
  187. 47.187.
    A. M. Malz: Estimating the probability distribution of the future exchange rate from option prices, J. Derivatives 5, 18–36 (1997)Google Scholar
  188. 47.188.
    R. R. Bliss, N. Panigirtzoglou: Option implied risk aversion estimates, Federal Reserve Bank of Chicago, Working Paper No. 15 (2001)Google Scholar
  189. 47.189.
    M. Rubinstein: Implied binomial trees, J. Finance 69, 771–818 (July 1994)Google Scholar
  190. 47.190.
    J. C. Jackwerth, M. Rubinstein: Recovering probability distributions from contemporaneous security prices, J. Finance 51, 1611–1631 (1996)Google Scholar
  191. 47.191.
    R. N. Rodriguez: A guide to the Burr type XII distributions, Biometrika 64, 129–34 (1977)MathSciNetzbMATHGoogle Scholar
  192. 47.192.
    P. R. Tadikamalla: A look at the Burr and related distributions, Int. Stat. Rev. 48, 337–44 (1980)MathSciNetzbMATHGoogle Scholar
  193. 47.193.
    S. Kullback: Information Theory (Dover, New York 1959)zbMATHGoogle Scholar
  194. 47.194.
    M. Avellenada, C. Friedan, R. Holmes, D. Samperi: Calibraing Volatility Surfaces via Relative Entropy Minimization (Courant Institute of Mathematics, New York 2002)Google Scholar
  195. 47.195.
    P. W. Buchen, M. Kelly: The maximum entropy distribution of an asset inferred from option prices, J. Financial Quant. Anal. 31, 143–159 (1996)Google Scholar
  196. 47.196.
    L. Gulko: The entropy theory of bond option pricing, Yale University Working paper (1995)Google Scholar
  197. 47.197.
    L. Gulko: The entropy theory of stock option pricing, Yale University Working paper (1996)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Technology Management and Financial EngineeringPolytechnic UniversityBrooklynUSA

Personalised recommendations