Atom Economy

  • Qing-Wen Song
  • Liang-Nian HeEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Atom economy

As many as possible incorporation of all raw materials into final products in the process of fine chemical synthesis through well-designed synthetic method and technology.

Environmental factor (E-factor)

The ratio of the total mass of waste to the mass of target product or the total mass of reactants and reagents subtracts the mass of the product.

Green chemistry

Sustainable chemistry, focusing on the designing of chemical products and processes that minimize the use and generation of hazardous substances at a source.

Process Mass Intensity

The total mass of materials per mass of product.

Zero Emission

No waste is formed in the process.

Definition of the Subject and Its Significance

Chemistry has created a beautiful life for humans. For example, chemical fertilizer and pesticide greatly enhance the production of food and have rescued a huge number of people on earth [1]. In addition, synthetic polymeric materials significantly improve the life quality [2]....


Primary Literature

  1. 1.
    McKenzie RH. Use of fertilizers, manures and pesticides for sustainable farm management.$department/deptdocs.nsf/all/agdex12413
  2. 2.
    Gardel ML (2013) Synthetic polymers with biological rigidity. Nature 493:618–619PubMedCrossRefGoogle Scholar
  3. 3.
    Grant G (2014) Integrative medicine, the medicine of the future. MOJ Clin Med Case Rep 1(1):00002Google Scholar
  4. 4.
    Freeman HS, Sokolowska J (1999) Developments in dyestuff chemistry. Color Technol 29(1):8–22CrossRefGoogle Scholar
  5. 5.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367PubMedCrossRefGoogle Scholar
  6. 6.
    Mabahwi NAB, Leh OLH, Omar D (2014) Human health and wellbeing: human health effect of air pollution. Proc Soc Behav Sci 153:221–229CrossRefGoogle Scholar
  7. 7.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Tundo P, Anastas P, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W (2000) Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl Chem 72(7):1207–1228CrossRefGoogle Scholar
  9. 9.
    Winterton N (2001) Twelve more green chemistry principles. Green Chem 6(1):G73–G75Google Scholar
  10. 10.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312PubMedCrossRefGoogle Scholar
  11. 11.
    Enze M, Jun F (1999) Advance of green chemistry. Chem Bulletin 1:10–15 (in Chinese)Google Scholar
  12. 12.
    Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477PubMedCrossRefGoogle Scholar
  13. 13.
    Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705PubMedCrossRefGoogle Scholar
  14. 14.
    Gabriela M, Ribeiro TC, Machado AASC (2013) Greenness of chemical reactions – limitations of mass metrics. Green Chem Lett Rev 6(1):1–18CrossRefGoogle Scholar
  15. 15.
    Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry – which are the best? Green Chem 4:521–527CrossRefGoogle Scholar
  16. 16.
    Wittig G, Geissler G (1953) Zur Reaktionsweise des Pentaphenyl-phosphors und einiger Derivate. Justus Liebigs Ann Chem (Eur J Org Chem) 580(127):44–57CrossRefGoogle Scholar
  17. 17.
    Wittig G, Schöllkopf U (1954) Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien I. Chem Ber 87(9):1318–1330CrossRefGoogle Scholar
  18. 18.
    Wittig G, Haag W (1955) Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien II. Chem Ber 88(11):1654–1666CrossRefGoogle Scholar
  19. 19.
    Hoffmann RW (2001) Wittig and his accomplishments: still relevant beyond his 100th birthday. Angew Chem Int Ed 40(8):1411–1416CrossRefGoogle Scholar
  20. 20.
    Schrock RR (1986) High-oxidation-state molybdenum and tungsten alkylidene complexes. Acc Chem Res 19(11):342–348CrossRefGoogle Scholar
  21. 21.
    Astruc D (2005) The metathesis reactions: from a historical perspective to recent developments. New J Chem 29(1):42–56CrossRefGoogle Scholar
  22. 22.
    Press Release: The Nobel Prize in Chemistry (2005) Nobel Media AB 2014. Web. 20 Nov 2017.
  23. 23.
    Evans D, Osborn JA, Wilkinson G (1968) Hydroformylation of alkenes by use of rhodium complex catalyst. J Chem Soc 33(21):3133–3142CrossRefGoogle Scholar
  24. 24.
    Cornils B, Herrmann WA (eds) (1998) Aqueous-phase organometallic catalysis. VCH, WeinheimGoogle Scholar
  25. 25.
    Ojima I, Tsai CY, Tzamarioudaki M, Bonafoux D (2000) The hydroformylation reaction. Org React 56:1–354Google Scholar
  26. 26.
    Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A Gen 221(1–2):253–265CrossRefGoogle Scholar
  27. 27.
    Pal P, Nayak J (2017) Acetic acid production and purification: critical review towards process intensification. Sep Purif Rev 46(1):44–61CrossRefGoogle Scholar
  28. 28.
    Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the Cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307CrossRefGoogle Scholar
  29. 29.
    Sheldon RA (1994) Consider the environmental quotient. ChemTech 24(3):38–47Google Scholar
  30. 30.
    Sheldon RA (1997) Catalysis: the key to waste minimization. J Chem Technol Biotechnol 68(4):381–388CrossRefGoogle Scholar
  31. 31.
    Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72(7):1233–1246CrossRefGoogle Scholar
  32. 32.
    Tundo P, Andraos J (eds) (2014) Green syntheses, vol 1. CRC Press/Taylor @ Francis Group, DallasGoogle Scholar
  33. 33.
    Sheldon RA (2017) The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem 19:18–43CrossRefGoogle Scholar
  34. 34.
    Sheldon RA (1992) Organic synthesis–past, present and future. Chem Ind (London, UK) 23:903–906Google Scholar
  35. 35.
    Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Commun 29:3352–3365CrossRefGoogle Scholar
  36. 36.
    Jimenez-Gonzalez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15:912–917CrossRefGoogle Scholar
  37. 37.
    Curzons AD, Constable DJC, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? – Using principles of sustainability to determine what is green – a corporate perspective. Green Chem 3:1–6CrossRefGoogle Scholar
  38. 38.
    Andraos J (2005) Unification of reaction metrics for green chemistry: applications to reaction analysis. Org Process Res Dev 9:149–163CrossRefGoogle Scholar
  39. 39.
    Andraos J (2005) Unification of reaction metrics for green chemistry II: evaluation of named organic reactions and application to reaction discovery. Org Process Res Dev 9:404–431CrossRefGoogle Scholar
  40. 40.
    Andraos J, Sayed M (2007) On the use of “green” metrics in the undergraduate organic chemistry lecture and lab to assess the mass efficiency of organic reactions. J Chem Ed 84:1004–1010CrossRefGoogle Scholar
  41. 41.
    Wender PA, Miller BL (1993) Toward the Ideal Synthesis: Connectivity Analysis and Multibond-Forming Processes. In: Hudlicky T (ed) Organic synthesis: theory and applications, vol 5. JAI Press, GreenwichGoogle Scholar
  42. 42.
    Rieu JP, Boucherle A, Cousse H, Mouzin G (1986) Tetrahedron report number 205: methods for the synthesis of antiinflammatory 2-aryl propionic acids. Tetrahedron 42(15):4095–4131CrossRefGoogle Scholar
  43. 43.
    Todd PA, Clissold SP (1990) Naproxen efficacy – a reappraisal of its pharmacology and therapeutic use in rheumatic diseases and pain states. Drugs 40:91–137PubMedCrossRefGoogle Scholar
  44. 44.
    Min EZ, Wu W (2000) Green chemistry and chemical engineering. Chemical Industry Press, Beijing, p 33 (in Chinese)Google Scholar
  45. 45.
    Poliakoff M, Licence P (2007) Sustainable technology: green chemistry. Nature 450:810–812PubMedCrossRefGoogle Scholar
  46. 46.
    Henriot S, Kuhn C, Kettler R, Da Prada M (1994) Lazabemide (Ro 19-6327), a reversible and highly sensitive MAO-B inhibitor: preclinical and clinical findings. J Neural Transm Suppl 41:321–325PubMedGoogle Scholar
  47. 47.
    Deng LX (2005) Comparison of atomic economy between traditional synthesis and green synthesis of drugs. Chem Tech 11:22–24 (in Chinese)Google Scholar
  48. 48.
    Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgetic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (naproxen). J Pharmacol Exp Ther 179(1):114–123PubMedGoogle Scholar
  49. 49.
    Harrington PJ, Lodewijk E (1997) Twenty years of Naproxen technology. Org Proc Res Dev 1:72–76CrossRefGoogle Scholar
  50. 50.
    McClellan PP (1950) Manufacture and uses of ethylene oxide and ethylene glycol. Ind Eng Chem 42(12):2402–2407CrossRefGoogle Scholar
  51. 51.
    Sheldon RA (2007) The E Factor: fifteen years on. Green Chem 9:1273–1283CrossRefGoogle Scholar
  52. 52.
    Lloyd L (2011) Oxidation catalysts, Chapter 4. In: Twigg MV, Spencer MS (eds) Handbook of industrial catalysts, part of the fundamental and applied catalysis book series. Springer, New York pp 150–154CrossRefGoogle Scholar
  53. 53.
    Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129(1):159–167CrossRefGoogle Scholar
  54. 54.
    Buttner H, Longwitz L, Steinbauer J, Wulf C, Werner T (2017) Recent developments in the synthesis of cyclic carbonates from epoxides and CO2. Top Curr Chem (Z) 375(50):1–56Google Scholar
  55. 55.
    Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5:1353–1370CrossRefGoogle Scholar
  56. 56.
    Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484PubMedCrossRefGoogle Scholar
  57. 57.
    Koichi N (2001) New developments in the production of methyl methacrylate. Appl Catal A Gen 221:367–377CrossRefGoogle Scholar
  58. 58.
    Cotrupe DP, Wellman WE, Burton PE (1969) Method for preparing dihydroisophorone. US Patent 3,446,850Google Scholar
  59. 59.
    Licence P, Ke J, Sokolova M, Ross SK, Poliakoff M (2003) Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plant. Green Chem 5(2):99–104CrossRefGoogle Scholar
  60. 60.
    Oakes RS, Clifford AA, Bartle KD, Pett MT, Rayner CM (1999) Sulfur oxidation in supercritical carbon dioxide: dramatic pressure dependant enhancement of diastereoselectivity for sulfoxidation of cysteine derivatives. Chem Commun 3:247–248CrossRefGoogle Scholar
  61. 61.
    Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35(9):706–716PubMedCrossRefGoogle Scholar
  62. 62.
    Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11:2–29CrossRefGoogle Scholar
  63. 63.
    Choi JC, He LN, Sakakura T (2002) Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chem 4(3):230–234CrossRefGoogle Scholar
  64. 64.
    Du Y, Kong DL, Wang HY, Cai F, Tian JS, Wang JQ, He LN (2005) Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A Chem 241(1–2):233–237CrossRefGoogle Scholar
  65. 65.
    Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Fujimoto K, Tomishige K (2013) Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem 6(8):1341–1344PubMedCrossRefGoogle Scholar
  66. 66.
    Tamura M, Wakasugi H, Shimizu K, Satsuma A (2011) Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst. Chem Eur J 17(41):11428–11431PubMedCrossRefGoogle Scholar
  67. 67.
    Song QW, Zhou ZH, Wang MY, Zhang K, Liu P, Xun JY, He LN (2016) Thermodynamically favorable synthesis of 2-oxazolidinones through silver-catalyzed reaction of propargylic alcohols, CO2, and 2-aminoethanols. ChemSusChem 9(16):2054–2058PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou ZH, Song QW, He LN (2017) Silver(I)-promoted cascade reaction of propargylic alcohols, carbon dioxide, and vicinal diols: thermodynamically favorable route to cyclic carbonates. ACS Omega 2:337–345PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li XD, Song QW, Lang XD, He LN, Chang Y (2017) Ag(I)/TMG-promoted cascade reaction of propargyl alcohols, carbon dioxide, and 2-aminoethanols to 2-oxazolidinones. ChemPhysChem 18(22):3182–3188PubMedCrossRefGoogle Scholar
  70. 70.
    Tomishige K, Yasuda H, Yoshida Y, Nurunnabi M, Li B, Kunimori K (2004) Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6(4):206–214CrossRefGoogle Scholar
  71. 71.
    Zhao X, Zhang Y, Wang Y (2004) Synthesis of propylene carbonate from urea and 1,2-propylene glycol over a zinc acetate catalyst. Ind Eng Chem Res 43(15):4038–4042CrossRefGoogle Scholar
  72. 72.
    Wittcoff H, Reuben BG, Plotkin JS (2004) Industrial organic chemicals. Wiley-IEEE, New York p 278. ISBN 978-0-471-44385-8CrossRefGoogle Scholar
  73. 73.
    Deshmukh KM, Qureshi ZS, Dhake KP, Bhanage BM (2010) Transesterification of dimethyl carbonate with phenol using Brønsted and Lewis acidic ionic liquids. Catal Commun 12(3):207–211CrossRefGoogle Scholar
  74. 74.
    Gao ZX, Zhu YJ (2005) Olefin metathesis – introduction to achievements of Nobel Prize. Sci Technol Rev 23(12):8–11 (in Chinese)Google Scholar
  75. 75.
    Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116(1):399–400CrossRefGoogle Scholar
  76. 76.
    1998 Presidential Green Chemistry Challenge Award for exploration of adipic acid from biomass.

Books and Reviews

  1. He LN (2013) Carbon dioxide chemistry. Science Press, Beijing (in Chinese)Google Scholar
  2. Newhouse T, Baran PS, Hoffmann RW (2009) The economies of synthesis. Chem Soc Rev 38(11):3010–3021PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ma SM, Wei XF (2006) Atom economic reactions. Chinese Petroleum Chemistry Industry Publisher, Beijing (in Chinese)Google Scholar
  4. Sheldon RA (2000) Atom efficiency and catalysis in organic synthesis. Pure Appl Chem 72(7):1233–1246CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory and Institute of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinPeople’s Republic of China
  2. 2.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China

Section editors and affiliations

  • Buxing Han
    • 1
  • Tianbin Wu
    • 2
  1. 1.Institute of Chemistry, Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingChina

Personalised recommendations