Advertisement

Physics of Mind and Car-Following Problem

  • Ihor LubashevskyEmail author
  • Kaito Morimura
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

Glossary

Dynamical trap

is the fuzzy point matching the stationary point of a dynamical system described in terms of differential equations. The dynamical trap may be treated as a generalization of stationary point for systems governed by humans and corresponds to anomalously long residence time for systems entering the region of dynamical trap.

Intentionality

is a property attributed to the mind and characterizing mental states as being “about something” with a functional reference to the intentional objects. Here intentionality is understood as the aspect of mental states characterizing them as “being goal-oriented” with some sequence of actions to be implemented for achieving the desired goal. In phenomenology intentionality is treated as a basic feature attributed to the mind and endowing imaginary future with causal power.

Intermittency of human actions

is a generic term characterizing human actions that can be conceived of as an irregular sequence of alternate phases of active...

Bibliography

  1. Andersen HK, Grush R (2009) A brief history of time-consciousness: historical precursors to James and Husserl. J Hist Philos 47(2):277–307CrossRefGoogle Scholar
  2. Andrews K (2015) The animal mind: an introduction to the philosophy of animal cognition. Routledge, Taylor & Francis Group, LondonGoogle Scholar
  3. Anonymous (E Robert Kelly) (1882) The alternative: a study in psychology. Macmillan and Co., LondonGoogle Scholar
  4. Asai Y, Tasaka Y, Nomura K, Nomura T, Casadio M, Morasso P (2009) A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4(7):e6169 (1–14)CrossRefGoogle Scholar
  5. Asai Y, Tateyama S, Nomura T (2013) Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface. PLoS One 8(5):e62, 956 (19 pages)CrossRefGoogle Scholar
  6. Balasubramaniam R (2013) On the control of unstable objects: the dynamics of human stick balancing. In: Richardson M, Riley M, Shockley K (eds) Progress in motor control: neural, computational and dynamic approaches. Springer Science + Business Media, New York, pp 149–168CrossRefGoogle Scholar
  7. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51:10351042CrossRefGoogle Scholar
  8. Bando M, Hasebe K, Nakanishi K, Nakayama A (1998) Analysis of optimal velocity model with explicit delay. Phys Rev E 58:5429–5435CrossRefGoogle Scholar
  9. Bernstein NA (1935) The problem of interrelation between coordination and localization. Arch Biol Sci 38:1–35, (in Russian)Google Scholar
  10. Bifulco GN, Pariota L, Brackstione M, Mcdonald M (2013) Driving behaviour models enabling the simulation of advanced driving assistance systems: revisiting the action point paradigm. Transp Res C Emerg Technol 36:352–366.  https://doi.org/10.1016/j.trc.2013.09.009CrossRefGoogle Scholar
  11. Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P (2008) Bounded stability of the quiet standing posture: an intermittent control model. Hum Mov Sci 27(3):473–495CrossRefGoogle Scholar
  12. Bourne C (2006) A future for presentism. Oxford University Press, Oxford, UKGoogle Scholar
  13. Brackstone M, McDonald M (1999) Car-following: a historical review. Transport Res F Traffic Psychol Behav 2(4):181–196CrossRefGoogle Scholar
  14. Carter P, Christiansen PL, Gaididei YB, Gorria C, Sand-stede B, Sǿrensen MP, Starke J (2014) Multijam solutions in traffic models with velocity-dependent driver strategies. SIAM J Appl Math 74(6):1895–1918MathSciNetCrossRefGoogle Scholar
  15. Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys 81(2):591–646CrossRefGoogle Scholar
  16. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329MathSciNetCrossRefGoogle Scholar
  17. Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36(03):181–204.  https://doi.org/10.1017/S0140525X12000477CrossRefGoogle Scholar
  18. Edie LC (1961) Car-following and steady-state theory for noncongested traffic. Oper Res 9(1):66–76.  https://doi.org/10.1287/opre.9.1.66MathSciNetCrossRefzbMATHGoogle Scholar
  19. Elliott MA, Giersch A (2016) What happens in a moment. Front Psychol 6:Article 1905 (7 pages).  https://doi.org/10.3389/fpsyg.2015.01905CrossRefGoogle Scholar
  20. Fancher P, Haugen J, Buonarosa ML, Bareket Z, Bogard SE, Hagan MR, Sayer JR, Ervin RD (1998) Intelligent cruise control field operational test. Final report. Volume I: Technical report. Report number: UMTRI-98-17, Report number: DOT/HS 808 849. University of Michigan, Transportation Research Institute, Ann ArborGoogle Scholar
  21. Friston K, Rigoli F, Ognibene D, Mathys C, Fitzgerald T, Pezzulo G (2015) Active inference and epistemic value. Cogn Neurosci 6(4):187–214.  https://doi.org/10.1080/17588928.2015.1020053CrossRefGoogle Scholar
  22. Gaididei YB, Gorria C, Berkemer R, Kawamoto A, Shiga T, Christiansen PL, Sǿrensen MP, Starke J (2013) Controlling traffic jams by time modulating the safety distance. Phys Rev E 88(4):042,803CrossRefGoogle Scholar
  23. Gallagher S, Zahavi D (2012) The phenomenological mind: an introduction to philosophy of mind and cognitive science, 2nd edn. Routledge, Taylor & Francis Group, LondonGoogle Scholar
  24. Gawthrop P, Loram I, Lakie M, Gollee H (2011) Intermittent control: a computational theory of human control. Biol Cybern 104(1–2):31–51MathSciNetCrossRefGoogle Scholar
  25. Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state traffic flow. Oper Res 7(4):499–505.  https://doi.org/10.1287/opre.7.4.499MathSciNetCrossRefGoogle Scholar
  26. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9(4):545–567MathSciNetCrossRefGoogle Scholar
  27. Gurusinghe GS, Nakatsuji T, Azuta Y, Ranjitkar P, Tanaboriboon Y (2002) Multiple car-following data with real-time kinematic global positioning system. Transp Res Rec J Transp Res Board 1802(1):166–180CrossRefGoogle Scholar
  28. Haken H (2009a) Synergetics: basic concepts. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer Science+Buisiness Media, New York, pp 8926–8946CrossRefGoogle Scholar
  29. Haken H (2009b) Synergetics, introduction to. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer Science+Buisiness Media, New York, pp 8946–8948CrossRefGoogle Scholar
  30. Hawley K (2015) Temporal parts In: Zalta EN (ed) The Stanford encyclopedia of philosophy, winter 2015 edn. Metaphysics Research Lab, Stanford University, Stanford, CAGoogle Scholar
  31. Helbing D (1991) A mathematical model for the behavior of pedestrians. Behav Sci 36(4):298–310CrossRefGoogle Scholar
  32. Helbing D (1994) A mathematical model for the behavior of individuals in a social field. J Math Sociol 19(3):189–219CrossRefGoogle Scholar
  33. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:10671141MathSciNetCrossRefGoogle Scholar
  34. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRefGoogle Scholar
  35. Helbing D, Tilch B (1998) Generalized force model of traffic dynamics. Phys Rev E 58(1):133–138.  https://doi.org/10.1103/PhysRevE.58.133CrossRefGoogle Scholar
  36. Hoogendoorn S, Hoogendoorn R, Daamen W (2011) Wiedemann revisited – new trajectory filtering technique and its implications for car-following modeling. Transp Res Rec J Transp Res Board 2260:152–162.  https://doi.org/10.3141/2260–17CrossRefGoogle Scholar
  37. Huys R, Perdikis D, Jirsa VK (2014) Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior. Psychol Rev 121(3):302–336CrossRefGoogle Scholar
  38. James W (1890) The principles of psychology, vol 1. Henry Holt and Company, New YorkGoogle Scholar
  39. Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64(1):017,101 (4 pages).  https://doi.org/10.1103/PhysRevE.64.017101CrossRefGoogle Scholar
  40. Jiang R, Hu MB, Zhang HM, Gao ZY, Jia B, Wu QS, Wang B, Yang M (2014) Traffic experiment reveals the nature of car-following. PLoS One 9(4):e94, 351 (9 pages).  https://doi.org/10.1371/journal.pone.0094351CrossRefGoogle Scholar
  41. Jiang R, Hu MB, Zhang H, Gao ZY, Jia B, Wu QS (2015) On some experimental features of car-following behavior and how to model them. Transp Res B Methodol 80:338–354.  https://doi.org/10.1016/j.trb.2015.08.003CrossRefGoogle Scholar
  42. Kendziorra A, Wagner P, Toledo T (2016) A stochastic car following model. Transp Res Procedia 15:198–207.  https://doi.org/10.1016/j.trpro.2016.06.017, International Symposium on Enhancing Highway Performance (ISEHP), June 14–16, 2016, BerlinCrossRefGoogle Scholar
  43. Kerner BS (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81(17):3797–3800.  https://doi.org/10.1103/PhysRevLett.81.3797CrossRefzbMATHGoogle Scholar
  44. Kerner BS (1999) Theory of congested traffic flow: self-organization without bottlenecks. In: Ceder A (ed) Transportation and traffic theory: proceedings of the 14th international symposium on transportation and traffic theory Jerusalem, Israel, 20–23 July, 1999. Elsevier Science, Oxford, UK, pp 147–171Google Scholar
  45. Kerner BS (2004) The physics of traffic: empirical freeway pattern features, engineering applications, and theory. Springer, BerlinCrossRefGoogle Scholar
  46. Kerner BS (2009a) Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, BerlinCrossRefGoogle Scholar
  47. Kerner BS (2009b) Traffic congestion, modeling approaches to. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer- Science+Buisiness Media, New York, pp 9302–9355CrossRefGoogle Scholar
  48. Kerner BS (2013) Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: a brief review. Phys A Stat Mech Appl 392(21):5261–5282.  https://doi.org/10.1016/j.physa.2013.06.004MathSciNetCrossRefzbMATHGoogle Scholar
  49. Kerner BS (2016) Failure of classical traffic flow theories: stochastic highway capacity and automatic driving. Phys A Stat Mech Appl 450:700–747.  https://doi.org/10.1016/j.physa.2016.01.034MathSciNetCrossRefzbMATHGoogle Scholar
  50. Kerner BS (2017) Breakdown in traffic networks: fundamentals of transportation science. Springer, Berlin.  https://doi.org/10.1007/978-3-662-54473-0CrossRefzbMATHGoogle Scholar
  51. Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A Math Gen 35(3):L31–L43.  https://doi.org/10.1088/0305–4470/35/3/102MathSciNetCrossRefzbMATHGoogle Scholar
  52. Kerner BS, Klenov SL (2003) Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Phys Rev E 68(3):036,130 (20 pages).  https://doi.org/10.1103/PhysRevE.68.036130CrossRefGoogle Scholar
  53. Kerner BS, Klenov SL (2006) Deterministic microscopic three-phase traffic flow models. J Phys A Math Gen 39(8):1775–1809.  https://doi.org/10.1088/0305-4470/39/23/C01MathSciNetCrossRefzbMATHGoogle Scholar
  54. Kerner BS, Rehborn H (1997) Experimental properties of phase transitions in traffic flow. Phys Rev Lett 79(202A-3):4030–4033.  https://doi.org/10.1103/PhysRevLett.79.4030CrossRefGoogle Scholar
  55. Kerner BS, Klenov SL, Wolf DE (2002) Cellular automata approach to three-phase traffic theory. J Phys A Math Gen 35(47):9971–10,013.  https://doi.org/10.1088/0305–4470/35/47/303MathSciNetCrossRefzbMATHGoogle Scholar
  56. Kerner BS, Klenov SL, Hiller A (2006) Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory. J Phys A Math Gen 39(9):2001–2020.  https://doi.org/10.1088/0305–4470/39/9/002CrossRefzbMATHGoogle Scholar
  57. Knospe W, Santen L, Schadschneider A, Schreckenberg M (2002) Single-vehicle data of highway traffic: microscopic description of traffic phases. Phys Rev E 65(5):056–133 (16 pages)CrossRefGoogle Scholar
  58. Krauss S, Wagner P, Gawron C (1996) Continuous limit of the Nagel-Schreckenberg model. Phys Rev E 54(4):3707–3712.  https://doi.org/10.1103/PhysRevE.54.3707CrossRefGoogle Scholar
  59. Latash ML (2008) Synergy. Oxford University Press, OxfordCrossRefGoogle Scholar
  60. Latash ML (2012a) Fundamentals of motor control. Elsevier, LondonGoogle Scholar
  61. Latash ML (2012b) The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 217(1):1–5.  https://doi.org/10.1007/s00221–012–3000–4CrossRefGoogle Scholar
  62. Latash ML (2015) Bernstein’s “desired future” and physics of human movement. In: Nadin M (ed) Anticipation: learning from the past the Russian/soviet contributions to the science of anticipation. Springer, Cham, pp 287–300CrossRefGoogle Scholar
  63. Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Mot Control 11(3):276–308CrossRefGoogle Scholar
  64. Lewin K (1951) In: Cartwright D-w (ed) Field theory in social science: selected theoretical papers. Harpers, Oxford, UKGoogle Scholar
  65. Li QL, Wong S, Min J, Tian S, Wang BH (2016) A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability. Phys A Stat Mech Appl 456:128134.  https://doi.org/10.1016/j.physa.2016.03.026CrossRefzbMATHGoogle Scholar
  66. Loram I, Gollee H, Lakie M, Gawthrop P (2011) Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? J Physiol 589(2):307–324CrossRefGoogle Scholar
  67. Lubashevsky I (2012) Dynamical traps caused by fuzzy rationality as a new emergence mechanism. Adv Complex Syst 15(8):1250,045 (25 pages).  https://doi.org/10.1142/S0219525912500452MathSciNetCrossRefGoogle Scholar
  68. Lubashevsky I (2016) Human fuzzy rationality as a novel mechanism of emergent phenomena. In: Skiadas CH, Skiadas C (eds) Handbook of applications of Chaos theory. CRC Press, Taylor & Francis Group, London, pp 827–878CrossRefGoogle Scholar
  69. Lubashevsky I (2017) Physics of the human mind. Springer International Publishing AG, Cham.  https://doi.org/10.1007/978-3-319-51706-3CrossRefzbMATHGoogle Scholar
  70. Lubashevsky I, Ando H (2016) Intermittent control properties of car following: theory and driving simulator experiments. arXiv preprint physics 160901812, pp 125Google Scholar
  71. Lubashevsky IA, Gafiychuk VV, Demchuk AV (1998) Anomalous relaxation oscillations due to dynamical traps. Phys A Stat Mech Appl 255(3–4):406–414.  https://doi.org/10.1016/S0378-4371(98)00094-6CrossRefGoogle Scholar
  72. Lubashevsky I, Kalenkov S, Mahnke R (2002a) Towards a variational principle for motivated vehicle motion. Phys Rev E 65:036,140, (5 pages).  https://doi.org/10.1103/PhysRevE.65.036140CrossRefGoogle Scholar
  73. Lubashevsky I, Mahnke R, Wagner P, Kalenkov S (2002b) Long-lived states in synchronized traffic flow: empirical prompt and dynamical trap model. Phys Rev E 66:016,117, 13 pagesCrossRefGoogle Scholar
  74. Lubashevsky I, Hajimahmoodzadeh M, Katsnelson A, Wagner P (2003a) Noise-induced phase transition in an oscillatory system with dynamical traps. Eur Phys J B Condens Matter Complex Syst 36(1):115–118.  https://doi.org/10.1140/epjb/e2003-00323-0CrossRefGoogle Scholar
  75. Lubashevsky I, Wagner P, Mahnke R (2003b) Bounded rational driver models. Eur Phys J B Condens Matter Complex Syst 32(2):243–247.  https://doi.org/10.1140/epjb/e2003-00094-6CrossRefGoogle Scholar
  76. Lubashevsky I, Wagner P, Mahnke R (2003c) Rational-driver approximation in car-following theory. Phys Rev E 68(5):056,109, (15 pages).  https://doi.org/10.1103/PhysRevE.68.056109CrossRefGoogle Scholar
  77. Luttinen RT (1996) Statistical analysis of vehicle time headways. PhD thesis, Helsinki University of Technol-ogy, Lahti Cente, Neopoli, LahtiGoogle Scholar
  78. Maerivoet S, Moor BD (2005) Cellular automata models of road traffic. Phys Rep 419(1):1–4.  https://doi.org/10.1016/j.physrep.2005.08.005MathSciNetCrossRefGoogle Scholar
  79. Mahnke R, Kaupužs J, Lubashevsky I (2005) Probabilistic description of traffic flow. Phys Rep 408(1):1–130.  https://doi.org/10.1016/j.physrep.2004.12.001CrossRefGoogle Scholar
  80. Marschler C, Sieber J, Berkemer R, Kawamoto A, Starke J (2014) Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models. SIAM J Appl Dyn Syst 13(3):1202–1238MathSciNetCrossRefGoogle Scholar
  81. Marschler C, Sieber J, Hjorth PG, Starke J (2015) Equation-free analysis of macroscopic behavior in traffic and pedestrian flow. In: Chraibi M, Boltes M, Schadschneider A, Seyfried A (eds) Traffic and granular Flow’13. Springer International Publishing, Cham, pp 423–439Google Scholar
  82. Martin V, Scholz JP, Schöner G (2009) Redundancy, self-motion, and motor control. Neural Comput 21(5):1371–1414CrossRefGoogle Scholar
  83. Milton JG (2013) Intermittent motor control: the “drift-and-act” hypothesis. In: Richardson MJ, Riley MA, Shockley K (eds) Progress in motor: control neural, computational and dynamic approaches. Springer Science+Business Media, New York, pp 169–193CrossRefGoogle Scholar
  84. Nagatani T, Nakanishi K (1998) Delay effect on phase transitions in traffic dynamics. Phys Rev E 57(6):6415–6421.  https://doi.org/10.1103/PhysRevE.57.6415CrossRefGoogle Scholar
  85. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229.  https://doi.org/10.1051/jp1:1992277CrossRefGoogle Scholar
  86. Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9(2):209–229CrossRefGoogle Scholar
  87. Oullier O, Kelso J (2009) Social coordination, from the perspective of coordination dynamics. In: Meyers R (ed) Encyclopedia of complexity and systems science. Springer Science +Business Media, LLC, New York, pp 8198–8213CrossRefGoogle Scholar
  88. Pariota L, Bifulco GN (2015) Experimental evidence supporting simpler action point paradigms for car-following. Transport Res F Traffic Psychol Behav 35:1–15.  https://doi.org/10.1016/j.trf.2015.08.002CrossRefGoogle Scholar
  89. Perlovsky LI (2006) Toward physics of the mind: concepts, emotions, consciousness, and symbols. Phys Life Rev 3(1):23–55.  https://doi.org/10.1016/j.plrev.2005.11.003MathSciNetCrossRefGoogle Scholar
  90. Perlovsky LI (2016) Physics of the mind. Front Syst Neurosci 10:Article 84 (12 pages.  https://doi.org/10.3389/fnsys.2016.00084CrossRefGoogle Scholar
  91. Pezzulo G, Rigoli F, Friston K (2015) Active inference, homeostatic regulation and adaptive behavioural control. Prog Neurobiol 134:17–35.  https://doi.org/10.1016/j.pneurobio.2015.09.001CrossRefGoogle Scholar
  92. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281MathSciNetCrossRefGoogle Scholar
  93. Proctor RW, Vu KPL (2003) Action selection. In: Weiner IB, Healy AF, Proctor RW (eds) Handbook of psychology. Experimental psychology, vol 4. Wiley, Hoboken, pp 293–316Google Scholar
  94. Reiter U (1994) Empirical studies as basis for traffic flow models. In: Alçelik R and Reilly W (eds) Proceedings of the second international symposium on highway capacity (Sydney, N.S.W., 1994), vol 2. : Australian Road Research Board, Vermont South, Victoria, Australia pp 493–502Google Scholar
  95. Reuschel A (1950a) Vehicle movements in a platoon. Österr Ing Arch 4:193–215zbMATHGoogle Scholar
  96. Reuschel A (1950b) Vehicle movements in a platoon with uniform acceleration or deceleration of the lead vehicle. Z Österr Ing Arch Ver 95:50–62; 73–77Google Scholar
  97. Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82(4):225–260CrossRefGoogle Scholar
  98. Schmidt RA (2003) Motor schema theory after 27 years: reflections and implications for a new theory. Res Q Exerc Sport 74(4):366–375CrossRefGoogle Scholar
  99. Schmidt RA, Lee TD (2011) Motor control and learning: a behavioral emphasis, 5th edn. Human Kinetics, ChampaignGoogle Scholar
  100. Schoeller F, Perlovsky L, Arseniev D (2018) Physics of mind: experimental confirmations of theoretical predictions. Phys Life Rev.  https://doi.org/10.1016/j.plrev.2017.11.021
  101. Scholz PJ, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289–306.  https://doi.org/10.1007/s002210050738CrossRefGoogle Scholar
  102. Smith DW (2013) Phenomenology In: Zalta EN (ed) The Stanford encyclopedia of philosophy, winter 2016 edn. Metaphysics Research Lab, Stanford University, Stanford, CAGoogle Scholar
  103. Suzuki Y, Nomura T, Casadio M, Morasso P (2012) Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J Theor Biol 310:55–79MathSciNetCrossRefGoogle Scholar
  104. Tian J, Jiang R, Jia B, Gao Z, Ma S (2016) Empirical analysis and simulation of the concave growth pattern of traffic oscillations. Transp Res B Methodol 93:338–354.  https://doi.org/10.1016/j.trb.2016.08.001CrossRefGoogle Scholar
  105. Todosiev EP (1963) The action point model of the driver-vehicle system. Technical report 202A–3, PhD dissertation, Ohio State UniversityGoogle Scholar
  106. Todosiev EP, Barbosa LC (1963/64) A proposed model for the driver-vehicle system. Traffic Eng 34:17–20Google Scholar
  107. TORCS (2018). The official site of TORCS. http://torcs.sourceforge.net/index.php. Accessed on Feb 2018
  108. Treiber M, Helbing D (1999) Macroscopic simulation of widely scattered synchronized traffic states. J Phys A Math Gen 32(1):L17–L23.  https://doi.org/10.1088/0305-4470/32/1/003CrossRefzbMATHGoogle Scholar
  109. Treiber M, Kesting A (2013) Traffic flow dynamics: data, models and simulation. Springer, BerlinCrossRefGoogle Scholar
  110. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62:1805–1824CrossRefGoogle Scholar
  111. Wagner P (2006) How human drivers control their vehicle. Eur Phys J B Condens Matter Complex Syst 52(3):427–431.  https://doi.org/10.1140/epjb/e2006-00300-1CrossRefGoogle Scholar
  112. Wagner P (2012) Analyzing fluctuations in car-following. Transp Res B Methodol 46(10):1384–1392CrossRefGoogle Scholar
  113. Wagner P, Lubashevsky I (2003) Empirical basis for car-following theory development. arXiv preprint condmat/0311192. http://adsabs.harvard.edu/abs/2003cond.mat.11192W
  114. Yoshikawa N, Suzuki Y, Kiyono K, Nomura T (2016) Intermittent feedback-control strategy for stabilizing inverted pendulum on manually controlled cart as analogy to human stick balancing. Front Comput Neurosci 10:Article 34 , 19 pages.  https://doi.org/10.3389/fncom.2016.00034CrossRefGoogle Scholar
  115. Yu S, Liu Q, Li X (2013) Full velocity difference and acceleration model for a car-following theory. Commun Nonlinear Sci Numer Simul 18(5):1229–1234.  https://doi.org/10.1016/j.cnsns.2012.09.014MathSciNetCrossRefzbMATHGoogle Scholar
  116. Zaslavsky GM (1995) From Hamiltonian chaos to Maxwell’s demon. Chaos 5(4):653–661MathSciNetCrossRefGoogle Scholar
  117. Zaslavsky GM (2002) Dynamical traps. Phys D Nonlinear Phenom 168–169:292–304.  https://doi.org/10.1016/S0167-2789(02)00516-X {VII} Latin American Workshop on Nonlinear PhenomenaMathSciNetCrossRefzbMATHGoogle Scholar
  118. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, New YorkzbMATHGoogle Scholar
  119. Zgonnikov A, Lubashevsky I (2014) Extended phase space description of human-controlled systems dynamics. Prog Theor Exp Phys 2014(3):033J02CrossRefGoogle Scholar
  120. Zgonnikov A, Lubashevsky I (2015) Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing. Cogn Process 16(4):351–358.  https://doi.org/10.1007/s10339-015-0653-5CrossRefGoogle Scholar
  121. Zgonnikov A, Lubashevsky I, Kanemoto S, Miyazawa T, Suzuki T (2014) To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing. J R Soc Interface 11:20140,636CrossRefGoogle Scholar
  122. Zgonnikov A, Kanemoto S, Lubashevsky I, Suzuki T (2015) How the type of visual feedback affects actions of human operators: the case of virtual stick balancing. In: Systems, man, and cybernetics (SMC), 2015 I.E. international conference on. IEEE, Piscataway, NJ pp 1100–1103.  https://doi.org/10.1109/SMC.2015.197
  123. Zhao X, Gao Z (2005) A new car-following model: full velocity and acceleration difference model. Eur Phys J B Condens Matter Complex Syst 47(1):145–150.  https://doi.org/10.1140/epjb/e2005-00304-3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Aizu, Tsuruga, Ikki-machiAizu-WakamatsuJapan

Personalised recommendations