Crop Science pp 401-424 | Cite as

Cropping Systems: Shaping Nature

  • Rafael J. Lopez-BellidoEmail author
  • Luis Lopez-Bellido
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Agricultural practices

Agricultural practices are a set of techniques applied to on-farm production and postproduction processes, resulting in food and nonfood agricultural products.


Agriculture and farming are often considered to be the same concept. However, both concepts can vary in their territorial scope of application. Agriculture is the production of food and goods through farming and forestry. Agriculture encompasses a wide variety of specialties and techniques. For this reason, its definition has developed to become the science, art, and business of cultivating soil, producing crops, and raising livestock. The major agricultural products can be broadly grouped into foods, fibers, and raw materials. As of late, agriculture also uses plants to produce biofuels, biopharmaceuticals, and bioplastics.


An agricultural system or agricultural ecosystem is the basic unit of study for an agroecologist. This term is somewhat arbitrarily defined as a...


  1. 1.
    ASA (2010) Glossary of terms. American Society of Agronomy.
  2. 2.
    CRS (2005) Agriculture: a glossary of terms, programs, and laws. Congressional Research Service, Washington, DCGoogle Scholar
  3. 3.
    Sadras V, Roget D, Krause M (2003) Dynamic cropping strategies for risk management in dry-land farming systems. Agric Syst 76:920–948CrossRefGoogle Scholar
  4. 4.
    Shrestha A (2003) Cropping systems: trends and advances. Food Products Press, BinghamtonGoogle Scholar
  5. 5.
    FAO (2008) Analysis of farming systems. UN Food and Agriculture Organization, RomeGoogle Scholar
  6. 6.
    Acquaah G (2004) Agricultural production systems principles of crop production, theories, techniques and technology. Prentice Hall, Upper Saddle River, pp 283–317Google Scholar
  7. 7.
    Gold MV (1999) Sustainable agriculture: definitions and terms. USDA National Agriculture Library, BeltsvilleGoogle Scholar
  8. 8.
    Earles R, Williams P (2005) Sustainable agriculture: an introduction. ATTRA National Sustainable Agriculture Information Service, FayetvilleGoogle Scholar
  9. 9.
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefGoogle Scholar
  10. 10.
    Whitfield J (2006) How green was my subsidy? Nature 439:908–909PubMedCrossRefGoogle Scholar
  11. 11.
    Marris E, Dodds P, Glover J, Hibberd J, Zhang JH, Sayre R (2008) Agronomy: five crop researchers who could change the world. Nature 456:563–568PubMedCrossRefGoogle Scholar
  12. 12.
    Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency and nitrogen management. Ambio 31:132–140PubMedCrossRefGoogle Scholar
  13. 13.
    Liebig MA, Tanaka DL, Krupinsky JM, Merrill SD, Hanson JD (2007) Dynamic cropping systems: contributions to improve agroecosystem sustainability. Agron J 99:899–903Google Scholar
  14. 14.
    Tanaka DL, Krupinsky JM, Liebig MA, Merrill SD, Ries RE, Hendrickson JR, Johnson HA, Hanson JD (2002) Dynamic cropping systems: an adaptable approach to crop production in the Great Plains. Agron J 94:957–961CrossRefGoogle Scholar
  15. 15.
    Halloran JM, Archer DW (2008) External economic drivers and US agricultural production systems. Renew Agr Food Syst 23:296–303CrossRefGoogle Scholar
  16. 16.
    Bergez JE, Colbach N, Crespo O, Garcia F, Jeuffroy MH, Justes E, Loyce C, Munier-Jolain N, Sadok W (2010) Designing crop management systems by simulation. Euro J Agron 32:3–9CrossRefGoogle Scholar
  17. 17.
    Loyce C, Wery J (2006) Les outils des agronomes pour l’evaluation et la conception des systèmes de culture. In: Dore T, Le Bail M, Martin P, Ney B, Roger-Estrade J (eds) L’agronomie aujourd’hui. QUAE, Paris, pp 77–95Google Scholar
  18. 18.
    Wery J, Langeveld JWA (2010) Introduction to the EJA special issue on “cropping systems design: new methods for new challenges”. Euro J Agron 32:1–2CrossRefGoogle Scholar
  19. 19.
    Washington-Ottombre C, Pijanowski B, Campbell D, Olson J, Maitima J, Musili A, Kibaki T, Kaburu H, Hayombe P, Owango E, Irigia B, Gichere S, Mwangi A (2010) Using a role-playing game to inform the development of land-use models for the study of a complex socio-ecological system. Agric Syst 126:117–126CrossRefGoogle Scholar
  20. 20.
    Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707PubMedCrossRefGoogle Scholar
  21. 21.
    Diamond J (1997) Guns, germs, and steel: the fates of human societies. Norton, New YorkGoogle Scholar
  22. 22.
    Kareiva P, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869PubMedCrossRefGoogle Scholar
  23. 23.
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  24. 24.
    Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904CrossRefGoogle Scholar
  25. 25.
    Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342PubMedCrossRefGoogle Scholar
  26. 26.
    Willis K, Gillson L, Brncic T (2004) How “virgin” is virgin rainforest? Science 304:402–403PubMedCrossRefGoogle Scholar
  27. 27.
    Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DCGoogle Scholar
  28. 28.
    Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma. Nature 434:561–562PubMedCrossRefGoogle Scholar
  29. 29.
    Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96:5952–5959PubMedCrossRefGoogle Scholar
  30. 30.
    Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycl 13:647–662CrossRefGoogle Scholar
  31. 31.
    Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88CrossRefGoogle Scholar
  32. 32.
    Prather MD et al (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 239–287Google Scholar
  33. 33.
    Boquet DJ, Breitenbeck GA (2004) Book reviews. Cropping systems: trends and advances. Crop Sci 44:2285CrossRefGoogle Scholar
  34. 34.
    Wackernagel M, Onisto L, Bello P, Callejas Linares A, Lopez Falfan IS, Mendez García J, Suarez Guerrero AI, Suarez Guerrero MG (1999) National natural capital accounting with the ecological footprint concept. Ecol Econ 29:375–390CrossRefGoogle Scholar
  35. 35.
    van Vuuren DP, Bouwman LF (2005) Exploring past and future changes in the ecological footprint for world regions. Ecol Econ 52:43–62CrossRefGoogle Scholar
  36. 36.
    Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072PubMedCrossRefGoogle Scholar
  37. 37.
    Niccol A (1997) Gattaca trailer. Jersey Films, Columbia PicturesGoogle Scholar
  38. 38.
    Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000PubMedCrossRefGoogle Scholar
  39. 39.
    Mayer A, Mayer J (1974) Agriculture: island empire. Daedelus 126:83–95Google Scholar
  40. 40.
    Levine AS (2009) “Agriculture” is not a dirty word. Science 324:1140PubMedCrossRefGoogle Scholar
  41. 41.
    Cohen JE (1995) How many people can the earth support? Norton, New YorkGoogle Scholar
  42. 42.
    Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284PubMedCrossRefGoogle Scholar
  43. 43.
    Rasmussen PE, Goulding KWT, Brown JR, Grace PR, Janzen HH, Körschens M (1998) Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282:893–896PubMedCrossRefGoogle Scholar
  44. 44.
    Waggoner PE (1995) How much land can ten billion people spare for nature? Does technology make a difference? Technol Soc 17:17–34CrossRefGoogle Scholar
  45. 45.
    Ryan KK, Seeley RJ (2013) Food as a hormone. Science 339:918–919PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lopez-Bellido RJ, Lopez-Bellido L, Benítez-Vega J, Lopez-Bellido FJ (2007) Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: II water utilization. Agron J 99:66–72CrossRefGoogle Scholar
  47. 47.
    Lopez-Bellido RJ, Fontan JM, Lopez-Bellido FJ, Lopez-Bellido L (2010) Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean Vertisol. Agron J 125:310–318CrossRefGoogle Scholar
  48. 48.
    Tanaka DL, Anderson RL, Rao SC (2005) Crop sequencing to improve use of precipitation and synergize crop growth. Agron J 97:385–390CrossRefGoogle Scholar
  49. 49.
    Merrill SD, Tanaka DL, Krupinsky JM, Ries RE (2004) Water use and depletion by diverse crop species on Haplustoll soil in the northern Great Plains. J Soil Water Conserv 59:176–183Google Scholar
  50. 50.
    Derpsch R (1998) Historical review of no-tillage cultivation of crops. JIRCAS Working Rep 13:1–18. Japan International Research Centre for Agricultural Sciences, Ibaraki, JapanGoogle Scholar
  51. 51.
    Triplett GB Jr, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Agron J 119:153–165Google Scholar
  52. 52.
    Lal R, Reicosky DC, Hanson JD (2007) Evolution of the plow over 10, 000 years and the rationale for no-till farming. Soil Tillage Res 93:1–12CrossRefGoogle Scholar
  53. 53.
    Wienhold BJ, Pikul JL, Liebig MA, Mikha MM, Varvel GE, Doran JW, Andrews SS (2006) Cropping system effects on soil quality in the Great Plains: synthesis from a regional project. Renew Agr Food Syst 21:49–59CrossRefGoogle Scholar
  54. 54.
    Lopez-Bellido RJ, Muñoz-Romero V, Fuentes-Guerra R, Fernandez-Garcia P, Lopez-Bellido L (2017) No-till: a key tool for sequestering C and N in microaggregates on a Mediterranean Vertisol. Soil Tillage Res 166:131–137CrossRefGoogle Scholar
  55. 55.
    Murphy CE, Lemerle D (2006) Continuous cropping systems and weed selection. Euphytica 148:61–73CrossRefGoogle Scholar
  56. 56.
    Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, van Gestel N, Six J, Venterea RT, van Kessel C (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368PubMedCrossRefGoogle Scholar
  57. 57.
    Nail EL, Young DL, Schillinger WF (2007) Diesel and glyphosate price changes benefit the economics of conservation tillage versus traditional tillage. Soil Tillage Res 94:321–327CrossRefGoogle Scholar
  58. 58.
    Lopez-Bellido L, Lopez-Bellido RJ, Castillo JE, Lopez-Bellido FJ (2000) Effects of tillage, crop rotation, and nitrogen fertilization on wheat under rainfed Mediterranean conditions. Agron J 92:1054–1063CrossRefGoogle Scholar
  59. 59.
    DeVries J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding, and seed systems for African crops. CAB International, WallingfordCrossRefGoogle Scholar
  60. 60.
    Ripoche A, Celette F, Cinna JP, Gary C (2010) Design of intercrop management plans to fulfil production and environmental objectives in vineyards. Eur J Agron 32:30–39CrossRefGoogle Scholar
  61. 61.
    Hooper CIIIFS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  62. 62.
    Kirschenmann F (2002) Why American agriculture is not sustainable. Renewable Resour J 20:6–11Google Scholar
  63. 63.
    Groot JCJ, Jellema A, Rossing WAH (2010) Designing a hedgerow network in a multifunctional agricultural landscape: balancing trade-offs among ecological quality, landscape character and implementation costs. Eur J Agron 32:112–119CrossRefGoogle Scholar
  64. 64.
    Bailey KL, Gossen BD, Lafond GR, Watson PR, Derksen DA (2001) Effect of tillage and crop rotation on root and foliar diseases of wheat and pea in Saskatchewan from 1991 to 1998: univariate and multivariate analyses. Can J Plant Sci 81:789–803CrossRefGoogle Scholar
  65. 65.
    Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94:198–209CrossRefGoogle Scholar
  66. 66.
    Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722PubMedCrossRefGoogle Scholar
  67. 67.
    Schlegel AJ, Grant CA, Havlin JL (2005) Challenging approaches to nitrogen fertilizer recommendations in continuous cropping systems in the Great Plains. Agron J 97:391–398CrossRefGoogle Scholar
  68. 68.
    Lopez-Bellido RJ, Lopez-Bellido L (2001) Efficiency of nitrogen in wheat under Mediterranean conditions: effect of tillage, crop rotation and N fertilization. Field Crop Res 71:31–46CrossRefGoogle Scholar
  69. 69.
    Grant CA, Peterson GA, Campbell CA (2002) Nutrient considerations for diversified cropping systems in the northern Great Plains. Agron J 94:186–198CrossRefGoogle Scholar
  70. 70.
    Tanaka DL, Krupinsky JM, Merrill SD, Liebig MA, Hanson JD (2007) Dynamic cropping systems for sustainable crop production in the Northern Great Plains. Agron J 99:904–911CrossRefGoogle Scholar
  71. 71.
    De Costa WAJM, Surentham P (2005) Tree-crop interactions in hedgerow intercropping with different tree species and tea in Sri Lanka: 1. Production and resource competition. Agrofor Syst 63:199–209CrossRefGoogle Scholar
  72. 72.
    Leonard J, Andrieux P (1998) Infiltration characteristics of soils in Mediterranean vineyards in southern France. Catena 32:209–223CrossRefGoogle Scholar
  73. 73.
    Battany MC, Grismer ME (2000) Rainfall runoff and erosion in Napa Valley vineyards: effects of slope, cover and surface roughness. Hydrol Process 14:1289–1304CrossRefGoogle Scholar
  74. 74.
    Monteiro A, Lopes CM (2007) Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric Ecosyst Environ 121:336–442CrossRefGoogle Scholar
  75. 75.
    Valdes Gomez H, Fermaud M, Roudet J, Calonnec A, Gary C (2008) Grey mould incidence is reduced on grapevines with lower vegetative and reproductive growth. Crop Prot 27:1174–1186CrossRefGoogle Scholar
  76. 76.
    Tanaka DL, Karn JF, Liebig MA, Kronberg SL, Hanson JD (2006) An integrated approach to crop/livestock systems: forage and grain production for swath grazing. Renew Agr Food Syst 20:223–231CrossRefGoogle Scholar
  77. 77.
    Villano R, Fleming E, Fleming P (2010) Evidence of farm-level synergies in mixed-farming systems in the Australian wheat-sheep zone. Agric Syst 126:146–152CrossRefGoogle Scholar
  78. 78.
    Walter A, Finger R, Huber R, Buchmann N (2017) Smart farming is key to developing sustainable agriculture. Proc Natl Acad Sci USA 114:6148–6150PubMedCrossRefGoogle Scholar
  79. 79.
    Floreano D, Wood RJ (2015) Science, technology and the future of small autonomous drones. Nature 521:460–466PubMedCrossRefGoogle Scholar
  80. 80.
    King A (2017) The future of agriculture. Nature 544:S21–S23PubMedCrossRefGoogle Scholar
  81. 81.
    Hanson JD, Liebig MA, Merrill SD, Tanaka DL, Krupinsky JM, Stott DE (2007) Dynamic cropping systems: increasing adaptability amid an uncertain future. Agron J 99:939–943Google Scholar
  82. 82.
    Peterson GA, Westfall DG, Peairs FB, Sherrod L, Poss D, Gangloff W, Larson K, Thompson DL, Ahuja LR, Koch MD, Walker CB (2000) Sustainable dryland agroecosystem management, Agricultural experiment station technical bulletin, vol TB00-3. Colorado State University, Fort CollinsGoogle Scholar
  83. 83.
    Evenson RE (2002) Economic impacts of agricultural research and extension, Chapter 11. In: Gardner BL, Rausser GC (eds) Handbook of agricultural economics, vol 1A. Elsevier, New York, pp 573–628Google Scholar
  84. 84.
    Pardey PG, Alston JM, Piggott RR (2006) Agricultural R&D in the developing world: too little, too late? International Food Policy Research Institute, Washington, DCGoogle Scholar
  85. 85.
    Falcon W, Fowler C (2002) Carving up the commons – emergence of a new international regime for germplasm development and transfer. Food Policy 27:197–222CrossRefGoogle Scholar
  86. 86.
    Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264PubMedCrossRefGoogle Scholar
  87. 87.
    Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257PubMedCrossRefGoogle Scholar
  88. 88.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  89. 89.
    Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc Lond Ser B Biol Sci 369:20120273CrossRefGoogle Scholar
  90. 90.
    Shetty P (2015) From food security to food and nutrition security: role of agriculture and farming systems for nutrition. Curr Sci 109:456–461Google Scholar
  91. 91.
    Alston JM, Beddow JM, Pardey PG (2009) Agricultural research, productivity, and food prices in the long run. Science 325:1209–1210PubMedCrossRefGoogle Scholar
  92. 92.
    Alexandratos N (1999) World food and agriculture: outlook for the medium and longer term. Proc Natl Acad Sci USA 96:5908–5914PubMedCrossRefGoogle Scholar
  93. 93.
    Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HCJ (2013) Science 341:33–34PubMedCrossRefGoogle Scholar
  94. 94.
    Tilman T, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518PubMedCrossRefGoogle Scholar
  95. 95.
    Hatfield JL, Walthall CL (2015) Meeting global food needs: realizing the potential via genetics × environment × management interactions. Agron J 107:1215–1226CrossRefGoogle Scholar
  96. 96.
    DeFries R, Fanzo J, Remans R, Palm C, Wood S, Anderman TL (2015) Global nutrition. Metrics for land-scarce agriculture. Science 349:238–240PubMedCrossRefGoogle Scholar
  97. 97.
    Bakera S, Volova T, Prudnikova SV, Satish S, Prasad MNN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17CrossRefGoogle Scholar
  98. 98.
    Namara RE, Hanjra MA, Castillo GE, Ravnborg HM, Smith L, Van Koppen B (2010) Agricultural water management and poverty linkages. Agric Water Manag 97:520–527CrossRefGoogle Scholar
  99. 99.
    Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788CrossRefGoogle Scholar
  100. 100.
    Naylor R (1996) Energy and resource constraints on intensive agricultural production. Annu Rev Energy Environ 21:99–123CrossRefGoogle Scholar
  101. 101.
    Nielsen DC, Unger PW, Miller PR (2005) Efficient water use in dryland cropping systems in the Great Plains. Agron J 97:364–372CrossRefGoogle Scholar
  102. 102.
    Miller PR, McConkey BG, Zentner RP, Campbell CA, Cochran VL (2003) Flexible cropping systems in the semiarid northern Great Plains. In: Hanson JD, Krupinsky JM (eds) Proceedings of dynamic cropping systems: principles, processes, and challenges, Bismark, 4–7 Aug 2003. USDA-ARS, Mandan, pp 87–104Google Scholar
  103. 103.
    Stokstad E (2010) Biotech crops good for farmers and environment, academy finds. Science 328:295PubMedCrossRefGoogle Scholar
  104. 104.
    Borlaug NE (2007) Sixty-two years of fighting hunger: personal recollections. Euphytica 157:287–297CrossRefGoogle Scholar
  105. 105.
    McClung CR (2014) Making hunger yield. Science 344:699–700PubMedCrossRefGoogle Scholar
  106. 106.
    Diggle AJ, Neve PB, Smith FP (2003) Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res 43:371–382CrossRefGoogle Scholar
  107. 107.
    Crichton M (1991) Jurassic park. Ballantine Books, The Random House Publishing Group, New YorkGoogle Scholar
  108. 108.
    Fedoroff NV, Battisti DS, Beachy RN, Cooper PJM, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, Reynolds MP, Ronald PC, Rosegrant MW, Sanchez PA, Vonshak A, Zhu JK (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Alberts B, Beachy R, Baulcombe D, Blobel G, Datta S, Fedoroff N, Kennedy D, Khush GS, Peacock J, Rees M, Sharp P (2014) Standing up for GMOs. Science 341:1320CrossRefGoogle Scholar
  110. 110.
    Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels – the food, energy, and environment trilemma. Science 325:270–271PubMedCrossRefGoogle Scholar
  111. 111.
    Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72PubMedCrossRefGoogle Scholar
  112. 112.
    Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Sustainable biofuels redux. Science 322:49–50PubMedCrossRefGoogle Scholar
  113. 113.
    Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600PubMedCrossRefGoogle Scholar
  114. 114.
    Campbell JMF, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42:5791–5794PubMedCrossRefGoogle Scholar
  115. 115.
    Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667CrossRefGoogle Scholar
  116. 116.
    Editorial (2010) Climate of suspicion. Nature 463:269Google Scholar
  117. 117.
    IPCC (2001) Climate change 2001. Impacts, adaptation and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  118. 118.
    Reidsma P, Ewert F, Oude Lansink A, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–125CrossRefGoogle Scholar
  119. 119.
    Stafford N (2007) The other greenhouse effect. Nature 448:526–528PubMedCrossRefGoogle Scholar
  120. 120.
    Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620PubMedCrossRefGoogle Scholar
  121. 121.
    Macbean N, Peylin P (2014) Agriculture and the global carbon cycle. Nature 515:351–352PubMedCrossRefGoogle Scholar
  122. 122.
    Griscoma BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, William H, Schlesinger WH et al (2017) Natural climate solutions. Proc Natl Acad Sci USA 114:11645–11650CrossRefGoogle Scholar
  123. 123.
    Campbell BM, Thornton P, Zougmore R, van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43CrossRefGoogle Scholar
  124. 124.
    Borras L, Slafer GA (2008) Agronomy and plant breeding are key to combating food crisis. Nature 453:1177PubMedCrossRefGoogle Scholar
  125. 125.
    Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–1265PubMedCrossRefGoogle Scholar
  126. 126.
    ICARDA (1995) Farm resource management program. Annual Report for 1994. International Center for Agricultural Research in the Dry Areas, AleppoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Eco-efficient Cropping Systems LabUniversity of CordobaCordobaSpain

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations