Advertisement

Crop Science pp 131-157 | Cite as

Crop Responses to Available Soil Water

  • O. Zarrouk
  • A. Fortunato
  • M. M. ChavesEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

Glossary

Dehydration avoidance

is the strategy of the plants that are able to maintain tissue water potential as long (and as high) as possible under drought conditions.

Dehydration tolerance

is the strategy of the plants that are able to cope with severe tissue dehydration.

Harvest index

is the biomass of the harvested product expressed as a percentage of the total crop biomass.

Photoassimilates

is the energy-storing carbohydrates produced by photosynthesis in the green tissues of the plants.

Water use efficiency (WUE)

is the carbon gain (or biomass formed) per unit of water transpired or the ratio between photosynthesis (A) and stomatal conductance (gs), termed as intrinsic WUE.

Definition of the Subject

Sustainable intensification of global agriculture is a major purpose (and challenge) for twenty-first century scientific, social, and political communities, in order to guarantee food security, while preserving natural resources. Fast growing population and climate change could lead...

Bibliography

  1. 1.
    IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123CrossRefGoogle Scholar
  3. 3.
    Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159PubMedCrossRefGoogle Scholar
  4. 4.
    Chaves MM, Davies B (2010) Drought effects and water use efficiency: improving crop production in dry environments. Funct Plant Biol 37(2):iii–iviCrossRefGoogle Scholar
  5. 5.
    Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential grains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47:172–189CrossRefGoogle Scholar
  6. 6.
    Reynolds M, Foulkes MJ, Slafer G, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918PubMedCrossRefGoogle Scholar
  7. 7.
    Chaves MM, Pereira JS, Maroco J (2003) Understanding plant response to drought – from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  8. 8.
    Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits – prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefGoogle Scholar
  9. 9.
    Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  10. 10.
    Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101(7):901–907PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lawlor DW (2009) Musings about the effects of environment on photosynthesis. Ann Bot 103:543–549PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water use efficiency. J Exp Bot 55(407):2447–2460PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations and alternatives. J Exp Bot 58(2):351–360PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Richards RA, Rebetzke GJ, Condon A, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeye W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97CrossRefGoogle Scholar
  20. 20.
    Araus JL, Ferrio JP, Buxo R, Voltas J (2007) The historical perspective of dryland agriculture: lessons learned from 10 000 years of wheat cultivation. J Exp Bot 58(2):131–145PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546CrossRefGoogle Scholar
  22. 22.
    Passioura J, Angus JF (2010) Improving productivity of crops in water-limited environments. Adv Agron 106:37–75CrossRefGoogle Scholar
  23. 23.
    Lafitte HR, Yongsheng G, Yan Y, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58(2):169–175PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Richards RA (1991) Crop improvement for temperate Australia: future opportunities. Field Crop Res 26(2):141–169CrossRefGoogle Scholar
  25. 25.
    Blum A (2005) Drought resistance, water-use efficiency, and yield potential- are they compatible, dissonant, or mutually exclusive? Aust J Agricu Res 56:1159–1168CrossRefGoogle Scholar
  26. 26.
    Blum A, Arkin GF (1984) Sorghum root growth and water-use as affected by water supply and growth duration. Field Crop Res 9:131–142CrossRefGoogle Scholar
  27. 27.
    Chaves MM, Santos TP, Souza CR, Ortuno MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Bot 150:237–252CrossRefGoogle Scholar
  28. 28.
    Johnson RS, Handley DF (2000) Using water stress to control vegetative growth and productivity of temperate fruit trees. Hortscience 35:1048–1050CrossRefGoogle Scholar
  29. 29.
    Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lockard RG, Schneider GW (1981) Stock and scion growth relationships and the dwarfing mechanism in apple. Hort Rev 3:315–375Google Scholar
  31. 31.
    Landsberg JJ, Jones HG (1981) Apple orchards. In: Kozlowski TT (ed) Water deficits and plant growth, vol 6. Academic Press, London, pp 419–469Google Scholar
  32. 32.
    Atkinson CJ, Policarpo M, Webster AD, Kingswel G (2000) Drought tolerance of clonal Malus determined from measurements of stomatal conductance and leaf water potential. Tree Physiol 20:557–563PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gregory PJ, Atkinson CJ, Bengough AG, Else MA, Fernandez-Fernandez F, Harrison RJ, Schmidt S (2013) Contributions of roots and rootstocks to sustainable, intensified crop production. J Exp Bot 64:1209–1222PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Repo-Carrasco R, Espinoza C, Jacobsen CE (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Inter 19:179–189CrossRefGoogle Scholar
  35. 35.
    Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.) Food Rev Inter 19:167–177CrossRefGoogle Scholar
  36. 36.
    Jacobsen SE, Monteros C, Corcuera LG, Bravo LA, Christiansen JL Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.) Europ J Agron 26:471–475CrossRefGoogle Scholar
  37. 37.
    Bertero HD, de la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of multi-environment trials. Field Crop Res 89:299–318CrossRefGoogle Scholar
  38. 38.
    FAO (2006) FAOSTAT data, FAO Statistical databases FAOSTAT. www.fao.org
  39. 39.
    Jacobsen SE, Mujica A (2003) The genetic resources of Andean grain amaranths (Amaranthus caudatus L., A. cruentus and A. hipochondriacus L.) in America. Plant Genet Resour Newsl 133:41–44Google Scholar
  40. 40.
    Bressani R, Gonzales JM, Zuniga J, Brauner M, Elias LG (1987) Yield, selected chemical composition and nutritive value of 14 selections of amaranth grain representing four species. J Sci Food Agric 38:347–356CrossRefGoogle Scholar
  41. 41.
    Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  43. 43.
    Turner NC (1986) Crop water deficits: a decade of progress. Adv Agron 39:1–51CrossRefGoogle Scholar
  44. 44.
    Ludlow MM (1989) Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses. SPB Academic, The Hague, pp 269–281Google Scholar
  45. 45.
    Blum A, Sinmena B, Mayer J, Golan G, Shpiler L (1994) Stem reserve mobilization supports wheat-grain filling under heat stress. Aust J Plant Physiol 21:771–781Google Scholar
  46. 46.
    Chaves MM, Pereira JS, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field: photosynthesis and growth. Ann Bot 89:907–916PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Yang J, Zhang J, Huang Z, Zhu Q, Wang L (2000) Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci 40:1645–1655CrossRefGoogle Scholar
  49. 49.
    Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W (2001) Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crop Res 71:47–55CrossRefGoogle Scholar
  50. 50.
    Rodrigues ML, Pacheco CMA, Chaves MM (1995) Soil–plant relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Exp Bot 46:947–956CrossRefGoogle Scholar
  51. 51.
    Levy PE, Moncrieff JB, Massheder JM, Jarvis PG, Scott SL, Brouwer J (1997) CO2 fluxes at leaf and canopy scale in millet, fallow and tiger bush vegetation at the HAPEX-Sahel southern super-site. J Hydrol 188–189:612–632CrossRefGoogle Scholar
  52. 52.
    Ehleringer JR, Cooper TA (1992) On the role of orientation in reducing photoinhibitory damage in photosynthetic-twig desert shrubs. Plant Cell Environ 15:301–306CrossRefGoogle Scholar
  53. 53.
    Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295CrossRefGoogle Scholar
  54. 54.
    Huang B (1997) Roots and drought resistance. Turfgrass performance during drought depends heavily on root characteristics. Golf Course Manag June:55–58Google Scholar
  55. 55.
    Ramamoorthy P, Lakshmanan K, Upadhyaya HD, Vincent Vadez V, Varshney RK (2017) Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.) Field Crop Res 201:146–161CrossRefGoogle Scholar
  56. 56.
    Vadez V (2014) Root hydraulics: the forgotten side of roots in drought adaptation. Field Crop Res 165:15–24CrossRefGoogle Scholar
  57. 57.
    Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pinheiro C, Cruz de Carvalho MH, Bartels D, Ricardo CP, Chaves MM (2008) Dehydrins in Lupinus albus: pattern of protein accumulation and gene expression in response to drought. Funct Plant Biol 35:85–91CrossRefGoogle Scholar
  59. 59.
    Anderson CM, Kohorn BD (2001) Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. J Plant Physiol 158:1215–1219CrossRefGoogle Scholar
  60. 60.
    Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341PubMedCrossRefGoogle Scholar
  62. 62.
    Turner NC, Abbo S, Berger JD, Chaturvedi SK, French RJ, Ludwig C, Mannur DM, Singh SJ, Yadava HS (2007) Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. J Exp Bot 58(2):187–194PubMedCrossRefGoogle Scholar
  63. 63.
    Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc Lond B Biol Sci 281:277–294CrossRefGoogle Scholar
  64. 64.
    Long SP, Zhu X-G, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330PubMedCrossRefGoogle Scholar
  65. 65.
    Passioura JB (1977) Grain yield, harvest index, and water use of wheat. J Aust Inst Agric Sci 43:117–121Google Scholar
  66. 66.
    Passioura JB (2006) Increasing crop productivity when water is scarce – from breeding to field management. Agric Water Manag 80:176–196CrossRefGoogle Scholar
  67. 67.
    Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water relations in C3 cereals: what should we breed for? Ann Bot 89:925–940PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Medina V, Gilbert ME (2016) Physiological trade-offs of stomatal closure under high evaporative gradients in field grown soybean. Funct Plant Biol 43:40–51CrossRefGoogle Scholar
  69. 69.
    Chaves MM, Costa JM, Zarrouk O, Pinheiro C, Lopes CM, Pereira JS (2016) Controlling stomatal aperture in semi-arid regions – the dilemma of saving water or being cool? Plant Sci 251:54–64PubMedCrossRefGoogle Scholar
  70. 70.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131PubMedCrossRefGoogle Scholar
  71. 71.
    Richards RA, Passioura JB (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agr Res 40:943–950CrossRefGoogle Scholar
  72. 72.
    Schoppach R, Fleury D, Sinclair TR, Sadok W (2012) Transpiration sensitivity to evaporative demand across 120 years of breeding of Australian wheat cultivars. J Agron Crop Sci 203:219–226CrossRefGoogle Scholar
  73. 73.
    Claverie E, Meunier F, Javaux M, Sadok W (2017) Increased contribution of wheat nocturnal transpiration to daily water use under drought. Physiol Plant.  https://doi.org/10.1111/ppl.12623
  74. 74.
    Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. PNAS 32:8963–8968CrossRefGoogle Scholar
  75. 75.
    Resco de Dios V, Loik ME, Smith R, Aspinwall MJ, Tisse DT (2016) Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth. Plant Cell Environ 39:3–11PubMedCrossRefGoogle Scholar
  76. 76.
    Sadok W (2017) The circadian life of nocturnal water use: when late-night decisions help improve your day. Plant Cell Environ 39:1–2CrossRefGoogle Scholar
  77. 77.
    Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621PubMedCrossRefGoogle Scholar
  78. 78.
    Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bunce JA (1997) Does transpiration control stomatal responses to water vapour pressure deficit? Plant Cell Environ 20:131–135CrossRefGoogle Scholar
  80. 80.
    Franks PJ, Cowan IR, Farquhar GD (1997) The apparent feed forward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ 20:142–145CrossRefGoogle Scholar
  81. 81.
    Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785CrossRefGoogle Scholar
  82. 82.
    Wilkinson S, Davies WJ (2002) ABA-based chemical signaling: the coordination of responses to stress in plants. Plant Cell Environ 25:195–210PubMedCrossRefGoogle Scholar
  83. 83.
    Lake JA, Woodward FI, Quick WP (2002) Long-distance CO2 signaling in plants. J Exp Bot 53:183–193PubMedCrossRefGoogle Scholar
  84. 84.
    Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013) The dual effect of abscisic acid on stomata. New Phytol 197:65–72PubMedCrossRefGoogle Scholar
  85. 85.
    Cornic G, Gouvallec JL, Briantais JM, Hodges M (1989) Effect of dehydration and high light on photosynthesis of two C3 plants (Phaseolus vulgaris L. and Elatastema repens [Cour.] Hall f.) Planta 177:84–90PubMedCrossRefGoogle Scholar
  86. 86.
    Loreto F, Tricoli D, Di Marco G (1995) On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant Sorghum bicolor exposed to water stress, temperature changes and carbon metabolism inhibition. Aust J Plant Physiol 22:885–892Google Scholar
  87. 87.
    Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:179–182CrossRefGoogle Scholar
  88. 88.
    Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905PubMedCrossRefGoogle Scholar
  89. 89.
    Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26CrossRefGoogle Scholar
  90. 90.
    Ort DR (2001) When there is too much light. Plant Physiol 125:29–32PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Matsubara S, Gilmore AM, Osmond CB (2001) Diurnal and acclamatory responses of violaxanthin and lutein epoxide in the Australianmistletoe Amyema miquelii. Aust J Plant Physiol 28:793–800Google Scholar
  92. 92.
    Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration, metabolic pathways and their role in stress protection. Phil Trans R Soc London B 355:1517–1529CrossRefGoogle Scholar
  93. 93.
    Biehler K, Fock H (1996) Evidence for the contribution of the Mehler peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112:265–272PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135PubMedCrossRefGoogle Scholar
  95. 95.
    Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681CrossRefGoogle Scholar
  96. 96.
    Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849CrossRefGoogle Scholar
  97. 97.
    Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006) Decreased Rubisco activity during water stress is induced by stomatal closure, not by decreased relative water content. New Phytol 172:73–82PubMedCrossRefGoogle Scholar
  98. 98.
    Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2010) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot 62:653PubMedCrossRefGoogle Scholar
  99. 99.
    Peet MM, Kramer PJ (1980) Effects of decreasing source-sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant Cell Environ 3:201–206Google Scholar
  100. 100.
    Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crop Res 86:131–146CrossRefGoogle Scholar
  101. 101.
    Gimeno TE, Sommerville KE, Valladares F, Atkin OK (2010) Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. Funct Plant Biol 37:323–333CrossRefGoogle Scholar
  102. 102.
    Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J (2005) Effects of water stress on respiration in soybean (Glycine max. L.) leaves. Plant Physiol 139:466–473PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Galmés J, Ribas-Carbo M, Medrano H, Flexas J (2007) Response of leaf respiration to water stress in Mediterranean species with different growth forms. J Arid Environ 68:206–222CrossRefGoogle Scholar
  104. 104.
    Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wingler A, QuickWP BRA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress, an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373CrossRefGoogle Scholar
  106. 106.
    Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Osmond CB, Badger MR, Maxwell K, Björkman O, Leegood RC (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–121CrossRefGoogle Scholar
  108. 108.
    Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457CrossRefGoogle Scholar
  109. 109.
    Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardeström P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81:139–152CrossRefGoogle Scholar
  110. 110.
    Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55(407):2385–2394PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Saini HS, Lalonde S (1998) Injuries to reproductive development under water stress, and their consequences for crop productivity. J Crop Prod 1:223–248CrossRefGoogle Scholar
  113. 113.
    Saini HS, Westgate ME (2000) Reproductive development in grain crops during drought. In: Spartes DL (ed) Advances in agronomy, vol 68. Academic, San Diego, pp 59–96Google Scholar
  114. 114.
    Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58(2):267–277PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    García-Tejero I, Jiménez-Bocanegra JA, Martínez G, Romero R, Durán-Zuazo VH, Muriel-Fernández JL (2010) Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. Salustiano]. Agric Water Manag 97(5):614–622CrossRefGoogle Scholar
  116. 116.
    Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J Exp Bot 48:1001–1009CrossRefGoogle Scholar
  117. 117.
    King RW, Evans LT (1977) Inhibition of flowering in Lolium temulentum L. by water stress: a role for abscisic acid. Aus J Plant Physiol 4:225–233Google Scholar
  118. 118.
    Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.) Ann Bot 48:623–633CrossRefGoogle Scholar
  119. 119.
    Rodrigo J, Hormaza IJ, Herrero M (2000) Ovary starch reserves and flower development in apricot (Prunus armeniaca). Physiol Plant 108(1):35–41CrossRefGoogle Scholar
  120. 120.
    Engin H (2006) Scanning electron microscopy of floral initiation and developmental stages in ‘Glohaven’ peach under water deficit. Bangladesh J Bot 35(2):163–168Google Scholar
  121. 121.
    Alburquerque N, Burgos L, Egea J (2003) Apricot flower bud development and abscission related to chilling, irrigation and type of shoots. Sci Hortic 98(3):265–276CrossRefGoogle Scholar
  122. 122.
    Southwick SM, Davenport TL (1986) Characterization of water stress and low temperature effects on floral induction in citrus. Plant Physiol 81:26–29PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jones HG (1987) Repeat flowering in apple caused by water stress or defoliation. Trees Struct Funct 1(3):135–138CrossRefGoogle Scholar
  124. 124.
    Crisosto CH, Sugar D, Lombard P (1988) Effects of putrescine sprays at anthesis on ‘Comice’ pear yield component. Adv Hortic Sci 2:27–29Google Scholar
  125. 125.
    Koshita Y, Takahara T (2004) Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.) Scientia Hort 99(3–4):301–307CrossRefGoogle Scholar
  126. 126.
    Akhalalkatsi M, Losch R (2005) Water limitation effect on seed development and germination in Trigonella coerulea (Fabaceae). Flora 200:493–501CrossRefGoogle Scholar
  127. 127.
    Mohan Ram HY, Rao IVR (1984) Physiology of flower bud growth and opening. Proc Indiana Acad Sci (Plant Sci) 93:253–274Google Scholar
  128. 128.
    Campbell DR (1996) Evolution of floral traits in a hermaphroditic plant: field measurements of heritabilities and genetic correlations. Evolution 50:1442–1453PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38PubMedPubMedCentralGoogle Scholar
  130. 130.
    Fang X, Turner NC, Yan G, Li F, Siddique KHM (2010) Flower number, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61(2):335–345PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Porch TG, Jahn M (2001) Effect of high temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731CrossRefGoogle Scholar
  132. 132.
    Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83CrossRefGoogle Scholar
  133. 133.
    Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sheoran IS, Saini HS (1996) Drought-induced sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169CrossRefGoogle Scholar
  135. 135.
    Koonjul PK, Minhas JS, Nunea C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190PubMedGoogle Scholar
  136. 136.
    Ji X, Shiran B, Wan J, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942PubMedCrossRefGoogle Scholar
  137. 137.
    Liu JX, Bennett J (2010) Reversible and irreversible drought induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. Mol Plant.  https://doi.org/10.1093/mp/ssq039
  138. 138.
    Saini HS, Sedgley M, Aspinall D (1984) Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol 11:243–253Google Scholar
  139. 139.
    Turner LB (1993) The effect of water stress on florl characters, pollination and seed set in white clover (Trifolium repens L.) J Exp Bot 44:1155–1160CrossRefGoogle Scholar
  140. 140.
    Nguyen GN, Hailstones DL, Wilkes M, Sutton BG (2009) Drought-induced oxidative conditions in rice anthers leading to a programmed cell death and pollen abortion. J Agron Crop Sci 195(3):157–164CrossRefGoogle Scholar
  141. 141.
    Ruiz-Sanchez MC, Egea J, Galego R, Torrecillas A (1999) Floral biology of ‘Bulida’ apricot trees subjected to postharvest drought stress. Ann Appl Biol 135(2):523–528CrossRefGoogle Scholar
  142. 142.
    Esparza G, DeJong TM, Weinbaum SA, Klein I (2001) Effects of irrigation deprivation during the harvest period on yield determinants in mature almond trees. Tree Physiol 21(14):1073–1079PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Matthews MA, Anderson MM (1989) Reproductive development in Vitis vinifera: responses to seasonal water deficits. Am J Enol Vitic 40:52–60Google Scholar
  144. 144.
    Johnson RS, Handley DF, DeJong TM (1992) Long-term response of early maturing peach trees to postharvest water deficits. J Am Soc Hort Sci 117:881–886CrossRefGoogle Scholar
  145. 145.
    Ussahatanonta S, Jackson DI, Rowe RN (1996) Effects of nutrient and water stress on vegetative and reproductive growth in Vitis vinifera L. Aust J Grape Wine Res 2:64–69CrossRefGoogle Scholar
  146. 146.
    Torrecillas A, Domingo R, Galego R, Ruiz-Sánchez MC (2000) Apricot tree response to withholding irrigation at different phenological periods. Scientia Hort 85(3):201–215CrossRefGoogle Scholar
  147. 147.
    Schussler JR, Westgate ME (1994) Increasing assimilate reserves does not prevent kernel abortion at low water potential in maize. Crop Sci 34:1569–1576CrossRefGoogle Scholar
  148. 148.
    Boyer JS (2010) Drought decision-making. J Exp Bot 61(13):3493–3497PubMedCrossRefGoogle Scholar
  149. 149.
    McLaughlin JE, Boyer JS (2004a) Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Ann Bot 94:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    McLaughlin JE, Boyer JS (2004b) Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann Bot 94:675–689PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Hiyane R, Hiyane S, Ching Tang A, Boyer JS (2010) Sucrose feeding reverses shade-induced kernel losses in maize. Ann Bot 106(3):395–403PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Yu L, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131:568–582PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kokubun M, Shimada S, Takahashi M (2001) Flower abortion caused by pre-anthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci 4:1517–1521CrossRefGoogle Scholar
  154. 154.
    Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C (2008) Sugars and flowerin g in the grapevine (Vitis vinifera L.) J Exp Bot 59(10):2565–2578PubMedCrossRefGoogle Scholar
  155. 155.
    Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540CrossRefGoogle Scholar
  156. 156.
    Setter TL, Parra R (2010) Relationship of carbohydrate and abscisic acid levels to kernel set in maize under post-pollination water deficit. Crop Sci 50:980–988CrossRefGoogle Scholar
  157. 157.
    Zinselmeier C, Westgate ME, Schussler JR, Jones RJ (1995) Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 107:385–391PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Young TE, Gallie DR (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42:397–414PubMedCrossRefGoogle Scholar
  159. 159.
    Mäkela P, McLaughlin JE, Boyer JS (2005) Imaging and quantifying carbohydrate transport to the developing ovaries of maize. Ann Bot 96:939–949PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Çakir R (2004) Effect of water stress at different developmental stages on vegetative and reproductive growth of corn. Field Crop Res 89:1–16CrossRefGoogle Scholar
  161. 161.
    Brevedan RE, Egli DB (2003) Crop physiology and metabolism: short period of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43:2083–2088CrossRefGoogle Scholar
  162. 162.
    Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2003) Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during grain filling. Field Crop Res 81:69–81CrossRefGoogle Scholar
  163. 163.
    Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25(1):145–149CrossRefGoogle Scholar
  165. 165.
    Mi G, Chen F, Zhang F (2009) Grain filling rate is limited by insufficient sugar supply in the large-grain wheat cultivar. J Plant Breed Crop Sci 1(3):60–64Google Scholar
  166. 166.
    Yang J, Zhang J (2005) Grain filling of cereals under soil drying. New Phytol 169:223–236CrossRefGoogle Scholar
  167. 167.
    Nicolas ME, Gleadow RM, Dalling MJ (1985) Effect of post-anthesis drought on cell-division and starch accumulation in develping wheat grains. Ann Bot 55:433–444CrossRefGoogle Scholar
  168. 168.
    Gooding MJ, Ellis RH, Shewry PR, Schofield JD (2003) Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J Cereal Sci 37(3):295–309CrossRefGoogle Scholar
  169. 169.
    Younesi O, Moradi A (2009) The effect of water limitation in the field on sorghum seed germination and vigor. Aust J Basic Appl Sci 3(2):1156–1159Google Scholar
  170. 170.
    Rotundo JL, Westgate ME (2009) Meta-analysis of environment effects on soybean seed composition. Field Crop Res 110:147–156CrossRefGoogle Scholar
  171. 171.
    Pinheiro C, Rodrigues AP, Saraiva de Carvalho I, Chaves MM, Ricardo CP (2005) Sugar metabolism in developing lupin seeds affected by a short-term water deficit. J Exp Bot 56:2705–2712PubMedCrossRefGoogle Scholar
  172. 172.
    Saint Pierre C, Peterson CJ, Ross AS, Ohm JB, Verhoeven MC, Larson M, Hoefer B (2008) White wheat grain quality changes with genotype, nitrogen fertilization and water stress. Agron J 100(2):414–420CrossRefGoogle Scholar
  173. 173.
    Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164(9):134–1143CrossRefGoogle Scholar
  174. 174.
    Larson KD, DeJong TM, Johnson RS (1988) Physiological and growth responses of mature peach trees to postharvest water stress. J Am Soc Hort Sci 113:296–300Google Scholar
  175. 175.
    Girona J, Mata M, Arbones A, Alegre S, Rufat J, Marsal J (2003) Peach tree response to single and combined regulated deficit irrigation regimes under shallow soils. J Am Soc Hort Sci 128:432–440CrossRefGoogle Scholar
  176. 176.
    Naor A, Stern R, Peres M, Greenblat Y, Gal Y, Flaishman MA (2005) Timing and severity of postharvest water stress affect following-year productivity and fruit quality of field-grown ‘Snow Queen’ nectarine. J Am Soc Hort Sci 130:806–812CrossRefGoogle Scholar
  177. 177.
    Lopez G, Girona J, Marsal J (2007) Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development. Tree Physiol 27(11):1619–1626PubMedCrossRefGoogle Scholar
  178. 178.
    Goldhamer DA, Viveros M (2000) Effects of preharvest irrigation cutoff durations and postharvest water deprivation on almond tree performance. Irrigation Sci 19:125–131CrossRefGoogle Scholar
  179. 179.
    Marsal J, Lopez G, Arbones A, Mata M, Vallverdu X, Girona J (2009) Influence of postharvest deficit irrigation and pre-harvest fruit thinning on sweet cherry (cv. New Star) fruit firmness and quality. J Hortic Sci Biotech 84:273–278CrossRefGoogle Scholar
  180. 180.
    Fernandes-silva AA, Ferreira TC, Correia CM, Malheiro AC, Villalobos FJ (2010) Influence of different irrigation regimes on crop yield and water use efficiency of olive. Plant and Soil 333:35–47CrossRefGoogle Scholar
  181. 181.
    Moriana A, Orgaz F, Pastor M, Fereres E (2003) Yield responses of a mature olive orchard to water deficits. J Am Soc Hort Sci 128:425–431CrossRefGoogle Scholar
  182. 182.
    Greven M, Neal S, Green S, Dichio B, Clothier B (2009) The effects of drought on the water use, fruit development and oil yield from young olive trees. Agric Water Manag 96:1525–1531CrossRefGoogle Scholar
  183. 183.
    Gucci R, Lodolini EM, Rapoport HF (2009) Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol 29(12):1575–1585PubMedCrossRefGoogle Scholar
  184. 184.
    Medrano H, Escalona JM, Cifre J, Bota J, Flexas J (2003) A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Bio 30:607–619CrossRefGoogle Scholar
  185. 185.
    Savin R, Nicolas ME (1996) Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Aust J Plant Physiol 23:201–221Google Scholar
  186. 186.
    Guttieri MJ, Bowen D, Gannon D, O’Brien K, Souza E (2001) Solvent retention capacities of irrigated soft white spring flours. Crop Sci 41:1054–1061CrossRefGoogle Scholar
  187. 187.
    Tollenaar M, Lee ED (2002) Yield potential, yield stability and stress tolerance in maize. Field Crop Res 75:161–169CrossRefGoogle Scholar
  188. 188.
    Gusta LV, Chen THH (1987) The physiology of water and temperature stress. In: Heyne EG (ed) Wheat and wheat improvement, vol 13, 2nd edn. ASA, CSSA and SSSA, Madison, pp 115–150Google Scholar
  189. 189.
    Coles GD, Jamieson PD, Haslemore RM (1991) Effects of moisture stress on malting quality in triumph barley. J Cereal Sci 14:161–177CrossRefGoogle Scholar
  190. 190.
    Lozovaya VV, Lygin AV, Ulanov AV, Nelson RL, Daydé J, Widholm JM (2005) Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci 45:1934–1940CrossRefGoogle Scholar
  191. 191.
    Ali Q, Ashraf M, Anwar F (2010) Seed composition and seed oil antioxidant activity of maize under water stress. J Am Oil Chem Soc 87(10):1179–1187CrossRefGoogle Scholar
  192. 192.
    Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Starke 56:89–99CrossRefGoogle Scholar
  193. 193.
    Dai Z (2009) Starch granule size distribution in grains at different positions on the spike of wheat (Triticum aestivum L.) Starch–Stärke 61(10):582–589CrossRefGoogle Scholar
  194. 194.
    Zhao CX, He MR, Wang ZL, Wang YF, Lin Q (2009) Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C R Biol 332(8):759–764PubMedCrossRefGoogle Scholar
  195. 195.
    Kumar V, Rani A, Solanki S, Hussain SM (2006) Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J Food Compos Anal 19:188–195CrossRefGoogle Scholar
  196. 196.
    Carrera C, Martinez MJ, Dardanelli J, Balzarini M (2009) Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci 49:990–998CrossRefGoogle Scholar
  197. 197.
    Carvalho IS, Ricardo CPP, Chaves MM (2005) Seeds chemical composition of two lupines (Lupinus albus and Lupinus mutabilis) influenced by water stress. J Agron Crop Sci 191:95–98CrossRefGoogle Scholar
  198. 198.
    Nayyar H, Singh S, Kaur S, Kumar S, Upadhyaya HD (2006) Differential sensitivity of macrocarpa and microcarpa types of chickpea (Cicer arietinum L.) to water stress: association of contrasting stress response with oxidative injury. J Integr Plant Biol 48:1318–1329CrossRefGoogle Scholar
  199. 199.
    Genard M, Souty M, Holmes S, Reich M, Breuils L (1994) Correlations among quality parameters of peach fruit. J Sci Food Agric 66:241–245CrossRefGoogle Scholar
  200. 200.
    Mercier V, Bussi C, Lescourret F, Genard M (2009) Effects of different irrigation regimes applied during the final stage of rapid growth on an early maturing peach cultivar. Irrigation Sci 27(4):297–306CrossRefGoogle Scholar
  201. 201.
    Gelly M, Recasens I, Mata M, Arbones A, Rufat J, Girona J, Marsal J (2003) Effects of water deficit during stage II of peach fruit development and postharvest on fruit quality and ethylene production. J Hortic Sci Biotech 78:324–330CrossRefGoogle Scholar
  202. 202.
    Gelly M, Recasens I, Girona J, Mata M, Arbones A, Rufat J, Marsal J (2004) Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage. J Sci Food Agric 84:561–568CrossRefGoogle Scholar
  203. 203.
    Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water environments. Aust J Agr Res 56:1181–1189CrossRefGoogle Scholar
  204. 204.
    Proietti P, Famiani F, Tombesi A (1999) Gas Exchange in Olive Fruit. Photosynthetica 36(3):423–432CrossRefGoogle Scholar
  205. 205.
    Stefanoudaki E, Williams M, Chartzoulakis K, Harwood J (2009) Effect of irrigation on quality attributes of olive oil. J Agric Food Chem 57(15):7048–7055PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Bravdo B, Hepner Y, Loinger C, Tabacman H (1985) Effect of irrigationand crop level on growth, yield and wine quality of cabernet sauvignon. Am J Enol Vitic 36:132–139Google Scholar
  207. 207.
    Kennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53:268–274Google Scholar
  208. 208.
    Zarrouk O, Francisco R, Pintó-Marijuan M, Brossa R, Santos RR, Pinheiro C, Costa JM, Lopes C, Chaves MM (2012) Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine. Agric Water Manag 114:18–29CrossRefGoogle Scholar
  209. 209.
    Zarrouk O, Brunetti C, Egipto R, Pinheiro C, Genebra T, Gori A, Lopes CM, Tattini M, Chaves MM (2016) Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front Plant Sci 7:1640PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavour and quality traits in grape berries of cabernet sauvignon and chardonnay. BMC Genomics 10:212PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Genebra T Genebra T, Santos RR, Francisco R, Pinto-Marijuan M, Brossa R, Serra AT, Duarte CMM, Chaves MM, Zarrouk O (2014) Proanthocyanidin accumulation and biosynthesis are modulated by the irrigation regime in Tempranillo seeds. Int J Mol Sci 15(7):11862–11877PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Coombe BG (1989) The grape berry as a sink. Acta Hortic 239:149–158CrossRefGoogle Scholar
  213. 213.
    Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci 161:579–588CrossRefGoogle Scholar
  214. 214.
    Gollop R, Even S, Colova-Tsolova V, Perl A (2002) Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. J Exp Bot 53:1397–1409PubMedPubMedCentralGoogle Scholar
  215. 215.
    Bindon KA, Dry PR, Loveys BR (2007) Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. cv. Cabernet sauvignon grape berries. J Agric Food Chem 55:4493–4500PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Pérez-Pastor A, Ruiz-Sánchez MC, Martínez JA, Norte PA, Artés F, Domingo R (2007) Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J Sci Food Agric 87(13):2409–2415CrossRefGoogle Scholar
  217. 217.
    Gómez-Rico A, Salvador MD, Moriana A, Pérez D, Olmedilla N, Ribas F, Fregapane G (2007) Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem 100(2):568–578CrossRefGoogle Scholar
  218. 218.
    Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1–2):1–14CrossRefGoogle Scholar
  219. 219.
    Atlin G (2003) Improving drought tolerance by selecting for yield. In: Fischer KS, Lafitte R, Fukai S, Atlin Q, Hardy B (eds) Breeding rice for drought-prone environments. IRRI, Los Bańos, pp 14–22Google Scholar
  220. 220.
    Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39(11):851–859CrossRefGoogle Scholar
  221. 221.
    Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding; from a breeding perspective. Field Crop Res 49:11–39CrossRefGoogle Scholar
  222. 222.
    Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, CambridgeGoogle Scholar
  223. 223.
    Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276CrossRefGoogle Scholar
  224. 224.
    Araus JL (1996) Integrative physiological criteria associated with yield potential. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 150–167Google Scholar
  225. 225.
    Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166CrossRefGoogle Scholar
  226. 226.
    Slafer GA, Araus JL (1998) Improving wheat responses to abiotic stresses. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, vol 1. University of Saskatchewan Extension Press, Saskatoon, pp 201–213Google Scholar
  227. 227.
    Edmeades GO, Bolaños J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39:1306–1315CrossRefGoogle Scholar
  228. 228.
    López-Castañeda CR, Richards RA (1994) Variation in temperate cereals in rainfed environments. I. Grain yield, biomass and agronomic characteristics. Field Crop Res 37:51–62CrossRefGoogle Scholar
  229. 229.
    Richards RA, Rawson HM, Jonhson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissues temperatures. Aust J Plant Physiol 13:465–473Google Scholar
  230. 230.
    Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Horak H (2017) Learning from the experts: drought resistance in desert plants. New Phytol 216:5–7PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysiological clues for biotechnology application. Ann Appl Biol 142:129–141CrossRefGoogle Scholar
  233. 233.
    Slafer GA, Araus JL (2007) Physiological traits for improving wheat yield under a wide range of conditions. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: Gene-Plant-crop relations. Springer, Dordrecht, pp 147–156CrossRefGoogle Scholar
  234. 234.
    Webster T (2002) Dwarfing rootstocks: past, present and future. Compact Fruit Trees 35(3):67–72Google Scholar
  235. 235.
    Reighard GL, Loreti L (2009) Rootstock development. In: Layne DR, Bassi D (eds) The peach: botany, production and uses. CABI, Cambridge, pp 193–220Google Scholar
  236. 236.
    Hammatt N (1992) Progress in the biotechnology of trees. World J Microbiol Biotechnol 8(4):369–377PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Zarrouk O, Pinochet J, Gogorcena Y, Moreno MA (2006) Graft compatibility between peach cultivars and Prunus rootstocks. Hortscience 41:1389–1394CrossRefGoogle Scholar
  238. 238.
    Zarrouk O, Testillano PS, Risueño MC, Moreno MA, Gogorcena Y (2010) Changes in cell/tissue organization and peroxidase activity as markers for early detection of graft incompatibility in peach/plum combinations. J Am Soc Hort Sci 135:9–17CrossRefGoogle Scholar
  239. 239.
    Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops annual. Rev Plant Biol 65:715–774CrossRefGoogle Scholar
  240. 240.
    Steel KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crop Res 101(2):180–186CrossRefGoogle Scholar
  241. 241.
    Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concnetration at different water regimes. J Exp Bot 56:3061–3070PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Belloti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered conditions. J Exp Bot 58:319–326PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 30(2):135–146PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Wang JW, Yang FP, Chen XQ, Liang RQ, Zhang LQ, Geng DM, Zhang XD, Song YZ, Zhang GS (2006) Induced expression of dreb transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genet Sin 33:468–476PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Maccaferri M, Sanguineti MC, Corneti S, Araus JL, Ben Salem M, Bort J, DeAmbrogio E, Garcia del Moral L, Demontis A, El-Ahmed A, Elouafi I, Maalouf F, Machlab H, Martos V, Nachit MN, Nserallah N, Ouabbou H, Royo C, Slama A, Villegas D, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Hall NM, Griffiths H, Corlett JA, Jones HG, Lynn J, King GJ (2005) Relationships between water-use traits and photosynthesis in Brassica Oleracea resolved by quantitative genetic analysis. Plant Breed 124(6):557–564CrossRefGoogle Scholar
  249. 249.
    Laza MR, Kondo M, Ideta O, Barlaan E, Imbe T (2006) Identification of quantitative trait loci for delta 13C and productivity in irrigated lowland rice. Crop Sci 46:763–773CrossRefGoogle Scholar
  250. 250.
    Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis ME, Moore C, Richards RA (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height. Theor Appl Genet 115:59–66PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL x environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023PubMedCrossRefGoogle Scholar
  253. 253.
    Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kangasjärvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, Ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154:357–372PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9(2):189–195PubMedCrossRefGoogle Scholar
  257. 257.
    Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. PNAS 104:16450–16455PubMedCrossRefGoogle Scholar
  258. 258.
    Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60(10):2805–2815PubMedCrossRefGoogle Scholar
  259. 259.
    Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733PubMedCrossRefGoogle Scholar
  260. 260.
    Zhu JM, Alvarez S, Marsh EL, LeNoble ME, Cho IJ, Sivaguru M, Chen SX, Nguyen HT, Wu YJ, Schachtman DP et al (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS 104:19631–19636PubMedCrossRefGoogle Scholar
  262. 262.
    Vanderauwera S, De Block M, Van de Steene N, van de Cotte B, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. PNAS 104:15150–15155PubMedCrossRefGoogle Scholar
  263. 263.
    Tognetti VB, Palatnik JF, Fillat MF, Melzer M, Hajirezaei M-R, Valle EM, Carrillo N (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18:2035–2050PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Marguerit E, Brendel O, Lebon E, Van Leeuwen C, Ollat N (2012) Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol 194:416–429PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Li W, Wang T, Zhang Y, Li Y (2016) Overexpression of soybean miR172c confers water deficit and salt tolerance but ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot 67:175–194PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168PubMedCrossRefGoogle Scholar
  270. 270.
    Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of micro- RNA genes in tobacco. Mol Biotechnol 49:159–165PubMedCrossRefGoogle Scholar
  271. 271.
    Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Yin F, Gao J, Liu M, Qin C, Zhang W, Yang A (2014) Genome- wide analysis of water-stress-responsive microRNA expression profile in tobacco roots. Funct Integr Genomics 14:319–332PubMedCrossRefGoogle Scholar
  273. 273.
    Ferdous J, Hussain S, Shi B (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305PubMedCrossRefGoogle Scholar
  274. 274.
    Boyko A, Kovalchuk I (2013) Epigenetic modifications in plants under adverse conditions: agricultural applications. In: Plant acclimation to environmental stress. Springer, New York, pp 233–267CrossRefGoogle Scholar
  275. 275.
    Harfouche A, Meilan R, Altman A (2013) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34:1181–1198CrossRefGoogle Scholar
  276. 276.
    Han S, Wagner D (2014) Role of chromatin in water stress responses in plants. J Exp Bot 65:2785–2799PubMedCrossRefGoogle Scholar
  277. 277.
    Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:124PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Emon J (2016) The omics revolution in agricultural research. J Agric Food Chem 64:36–44PubMedCrossRefGoogle Scholar
  279. 279.
    Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  280. 280.
    Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417PubMedCrossRefGoogle Scholar
  281. 281.
    Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149PubMedCrossRefGoogle Scholar
  282. 282.
    Redillas M, Park S-H, Lee J, Kim Y, Jeong J, Jung H (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96CrossRefGoogle Scholar
  283. 283.
    Ullah N, Yuce M, Gökçe N, Hikmet Budak H (2017) Comparative metabolite profiling of drought stress in root and leaves of sever Triticeas species. BMC Genomics 18:969PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plant Molecular Ecophysiology Laboratory (LEM), Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de LisboaOeirasPortugal
  2. 2.Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations