Crop Science pp 195-207 | Cite as

Seed Dormancy and Agriculture and Physiology

  • Roberto L. Benech-ArnoldEmail author
  • M. Verónica Rodriguez
  • Diego Batlla
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Abscisic acid

Plant growth regulator that, among other processes, inhibits seed germination and is involved in dormancy imposition.


Internal inadequacy of a seed that impedes its germination under, otherwise, favorable thermal, hydric, and gaseous conditions

Preharvest sprouting

Untimely grain germination in the mother plant due to a combination of low dormancy and damp conditions prior to crop harvest


Reactive oxygen species implicated in tissue aging and, more recently, in seed dormancy relief

Stratification thermal time index

An index calculated by summing thermal time below a threshold temperature, which is used to estimate dormancy release as a function of stratification temperature and time

Definition of the Subject

Dormancy is a common attribute of temperate species. Its adaptive significance is quite evident for species living in the wild: dormancy is a mean for restricting germination to the season when environmental conditions are suitable for plant...


  1. 1.
    Baskin CC, Baskin JM (1998) Seeds: ecology biogeography and evolution of dormancy and germination. Academic, San DiegoGoogle Scholar
  2. 2.
    Chahtane H, Kim W, Lopez-Molina L (2017) Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot 68:857–869PubMedGoogle Scholar
  3. 3.
    Nikolaeva MG (1967) Physiology of deep dormancy in seeds. Izdatel’stvo ‘Nauka’, Leningrad (in Russian) (trans: Shapiro Z) (1969). National Science Foundation, Washington, DC, p 219Google Scholar
  4. 4.
    Baskin JM, Baskin CC (2004) A classification system for dormancy. Seed Sci Res 14:1–16Google Scholar
  5. 5.
    Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523CrossRefGoogle Scholar
  6. 6.
    Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73CrossRefGoogle Scholar
  7. 7.
    Benech-Arnold RL (2004) Inception, maintenance and termination of dormancy in grain crops. Physiology, genetics and environmental control. In: Benech-Arnold R, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Product Press, New York, pp 169–198Google Scholar
  8. 8.
    Walker-Simmons MK, Sesing J (1990) Temperature effects on embryonic abscisic acid levels during development of wheat grain dormancy. J Plant Growth Regul 9:51–56CrossRefGoogle Scholar
  9. 9.
    Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84CrossRefGoogle Scholar
  10. 10.
    Benech-Arnold RL, Fenner M, Edwards PJ (1991) Changes in germinability, ABA levels and ABA embryonic sensitivity in developing seeds of Sorghum bicolor induced by water stress during grain filling. New Phytol 118:339–347CrossRefGoogle Scholar
  11. 11.
    Benech-Arnold RL, Fenner M, Edwards PJ (1995) Influence of potassium nutrition on germinability, ABA content and embryonic sensitivity to ABA of developing seeds of Sorghum bicolor (L.) Moench. New Phytol 130:207–216CrossRefGoogle Scholar
  12. 12.
    Gate P (1995) Ecophysiologie de la germination sur pied. Perspect Agri 204:22–29Google Scholar
  13. 13.
    Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, p 250CrossRefGoogle Scholar
  14. 14.
    Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modeling of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination, vol 27. Blackwell, Oxford, pp 72–112CrossRefGoogle Scholar
  15. 15.
    Batlla D, Benech-Arnold RL (2007) Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Prot 26:189–197CrossRefGoogle Scholar
  16. 16.
    Batlla D, Benech-Arnold RL (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Mol Biol 73:3–13CrossRefGoogle Scholar
  17. 17.
    Batlla D, Benech-Arnold RL (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci Res 16:47–59CrossRefGoogle Scholar
  18. 18.
    Rodríguez MV, Barrero J, Corbineau F, Gubler F, Benech-Arnold RL (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci Res 25(2):99–119CrossRefGoogle Scholar
  19. 19.
    Corbineau F, Bagniol S, Côme D (1990) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J Bot 39:313–325Google Scholar
  20. 20.
    Corbineau F, Côme D (1987) Regulation de las semences de tournesol par l’éthylene. In: Annales ANPP (ed) 2ème Colloque sur les substances de croissance et leurs utilisations en agriculture, vol 1. Association Nationale de Protection des Plantes, Paris, pp 271–282Google Scholar
  21. 21.
    Cseresnyes Z (1979) Studies on the duration of dormancy and methods of determining the germination of dormant seeds of Helianthus annuus. Seed Sci Technol 7:179–188Google Scholar
  22. 22.
    Bodrone MP, Rodríguez MV, Arisnabarreta S, Batlla D (2017) Maternal environment and dormancy in sunflower: the effect of temperature during fruit development. Eur J Agron 82:93–103CrossRefGoogle Scholar
  23. 23.
    Corbineau F (1987) La germination des semences de tournesol et sa regulation par l’éthylene. CR Acad Sci Agr Fr 266:477–479Google Scholar
  24. 24.
    Dominguez CP, Batlla D, Rodríguez MV, Windauer LB, Gerbaldo M, Benech-Arnold RL (2016) Pericarp-imposed dormancy in sunflower: physiological basis, impact on crop emergence, and removal at an industrial scale. Crop Sci 56(2):716–726CrossRefGoogle Scholar
  25. 25.
    Le Page-Degivry MT, Barthe P, Garello G (1990) Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiol 92:1164–1168CrossRefGoogle Scholar
  26. 26.
    Le Page-Degivry MT, Garello G (1992) In situ abscisic acid synthesis. A requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiol 98:1386–1390CrossRefGoogle Scholar
  27. 27.
    Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism of seed dormancy alleviation. Plant J 50:452–465CrossRefGoogle Scholar
  28. 28.
    Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465CrossRefGoogle Scholar
  29. 29.
    Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208CrossRefGoogle Scholar
  30. 30.
    Gao F, Rampitsch C, Chitnis VR, Humphreys GD, Jordan MC, Ayele BT (2013) Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.) Plant Biotechnol J 11(8):921–932CrossRefGoogle Scholar
  31. 31.
    El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77CrossRefGoogle Scholar
  32. 32.
    Abeles FB (1986) Role of ethylene in Lactuca sativa cv. Grand rapids seed germination. Plant Physiol 81:780–787CrossRefGoogle Scholar
  33. 33.
    Ketring DL (1977) Ethylene and seed germination. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. Elsevier/North Holland Biomedical Press, Amsterdam, pp 157–178Google Scholar
  34. 34.
    Srivastava AK, Dey SC (1982) Physiology of seed dormancy in sunflower. Acta Agron Acad Sci Hung 31:70–80Google Scholar
  35. 35.
    Bagniol S (1987) Mise en évidence de l’intervention de l’ethylene dans la germination et la dormance des semences de tournesol (Helianthus annuus L.). Diplôme d’Ëtudes Approfondies, Université Pierre et Marie Curie, ParisGoogle Scholar
  36. 36.
    Seiler GJ (1998) Seed maturity, storage time and temperature, and media treatment effects on germination of two wild sunflowers. Agron J 90:221–226CrossRefGoogle Scholar
  37. 37.
    Oracz K, El Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: crosstalk with ethylene signaling pathway. J Exp Bot 59:2241–2251CrossRefGoogle Scholar
  38. 38.
    Benech-Arnold RL, Giallorenzi MC, Frank J, Rodriguez V (1999) Termination of hull-imposed dormancy in barley is correlated with changes in embryonic ABA content and sensitivity. Seed Sci Res 9:39–47CrossRefGoogle Scholar
  39. 39.
    Lenoir C, Corbineau F, Come D (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiol Plant 68:301–307CrossRefGoogle Scholar
  40. 40.
    Corbineau F, Poljakoff-Mayber A, Côme D (1991) Responsiveness to abscisic acid of embryos of dormant oat (Avena sativa) seeds. Involvement of ABA-inducible proteins. Physiol Plant 83:1–6CrossRefGoogle Scholar
  41. 41.
    Wang M, van der Meulen RM, Visser K, Van Schaik H-P, Van Duijn B, de Boer AH (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8:129–137CrossRefGoogle Scholar
  42. 42.
    Benech-Arnold RL, Gualano NA, Leymarie J, Come D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57:1423–1430CrossRefGoogle Scholar
  43. 43.
    Mendiondo GM, Leymarie J, Farrant J, Corbineau F, Benech-Arnold RL (2010) Differential expression of abscisic acid metabolism and signaling genes induced by seed covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Sci Res 20:69–77CrossRefGoogle Scholar
  44. 44.
    Biddulph TB, Plummer JA, Setter TL, Mares DJ (2008) Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field. Field Crop Res 107:116–128CrossRefGoogle Scholar
  45. 45.
    Steinbach HS, Benech-Arnold RL, Kristof G, Sánchez RA, Marcucci-Poltri S (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and sprouting-susceptible varieties. J Exp Bot 46:701–709CrossRefGoogle Scholar
  46. 46.
    Steinbach HS, Benech-Arnold RL, Sánchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113:149–154CrossRefGoogle Scholar
  47. 47.
    Rodríguez MV, Mendiondo GM, Maskin L, Gudesblat GE, Iusem ND, Benech-Arnold RL (2009) Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Ann Bot 104:975–985CrossRefGoogle Scholar
  48. 48.
    Gao FY, Ren GJ, Lu XJ, Sun SX, Li HJ, Gao YM, Luo H, Yan WG, Zhang YZ (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breed 127:268–273CrossRefGoogle Scholar
  49. 49.
    Kumar A, Kumar J, Singh E, Garg T, Chhuneja P, Balyan HS, Gupta PK (2009) QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177:114–122CrossRefGoogle Scholar
  50. 50.
    Lohwasser U, Roder MS, Borner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.) Euphytica 143:247–249CrossRefGoogle Scholar
  51. 51.
    Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Sci 40:1406–1417CrossRefGoogle Scholar
  52. 52.
    Cantoro R, Fernández LG, Cervigni GDL, Rodríguez MV, Gieco JO, Paniego N, Heinz RA, Benech-Arnold RL (2016) Seed dormancy QTL identification across a Sorghum bicolor segregating population. Euphytica 211:41–56CrossRefGoogle Scholar
  53. 53.
    Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67(14):4169–4178CrossRefGoogle Scholar
  54. 54.
    Del Fueyo P, Sánchez RA, Benech-Arnold RL (2003) Seed longevity in two sorghum varieties with contrasting dormancy level prior to harvest. Seed Sci Technol 31:639–650CrossRefGoogle Scholar
  55. 55.
    Gualano NA, Del Fueyo PA, Benech-Arnold RL (2014) Potential longevity (Ki) of malting barley (Hordeum vulgare L.) grain lots relates to their degree of pre-germination assessed through different industrial quality parameters. J Cereal Sci 60:222–228CrossRefGoogle Scholar
  56. 56.
    Finkelstein RR, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415CrossRefGoogle Scholar
  57. 57.
    Ji HS, Chu SH, Jiang W, Cho YI, Hahn JH, Eun MY, McCouch SR, Koh HJ (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173:995–1005CrossRefGoogle Scholar
  58. 58.
    Mares DJ, Mrva K, Cheong J et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364CrossRefGoogle Scholar
  59. 59.
    Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021CrossRefGoogle Scholar
  60. 60.
    Rodríguez MV, Margineda M, González-Martín JF, Insáusti P, Benech-Arnold RL (2001) Predicting pre-harvest sprouting susceptibility in barley: a model based on temperature during grain filling. Agron J 93:1071–1079CrossRefGoogle Scholar
  61. 61.
    Gualano NA, Benech-Arnold RL (2009a) Predicting pre-harvest sprouting susceptibility in barley: looking for “sensitivity windows” to temperature throughout grain filling in various commercial cultivars. Field Crops Res 114:35–44CrossRefGoogle Scholar
  62. 62.
    Buhler DD, Hartzler RG, Forcella F (1997) Implications of weed seedbank dynamics to weed management. Weed Sci 45:329–336Google Scholar
  63. 63.
    Forcella F, Benech-Arnold RL, Sánchez RA, Ghersa CM (2000) Modelling seedling emergence. Field Crop Res 67:123–139CrossRefGoogle Scholar
  64. 64.
    Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crop Res 67:105–122CrossRefGoogle Scholar
  65. 65.
    Malavert C, Batlla D, Benech-Arnold RL (2017) Temperature-dependent regulation of induction into secondary dormancy of Polygonum aviculare L. seeds: a quantitative analysis. Ecol Model 352:128–138CrossRefGoogle Scholar
  66. 66.
    Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16:17–28CrossRefGoogle Scholar
  67. 67.
    Batlla D, Agostinelli A (2017) Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: a quantitative analysis using the hydrotime model. Seed Sci Res 27(3):231–242CrossRefGoogle Scholar
  68. 68.
    Karssen CM (1982) Seasonal patterns of dormancy in weed seeds. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam, pp 243–270Google Scholar
  69. 69.
    Benech-Arnold R, Ghersa C, Sánchez R, García Fernandez A (1988) The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. regulation of germination under leaf canopies. Funct Ecol 2:311–318CrossRefGoogle Scholar
  70. 70.
    Ghersa CM, Benech-Arnold RL, Martinez Ghersa MA (1992) The role of fluctuating temperatures in germination and establishment of Sorghum halepense (L.) Pers. II. Regulation of germination at increasing depths. Funct Ecol 6:460–468CrossRefGoogle Scholar
  71. 71.
    Dyer WE (1995) Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci 43:498–503Google Scholar
  72. 72.
    Ghersa CM, Martinez-Ghersa MA, Benech-Arnold RL (1997) The use of seed dormancy to improve grain production. J Prod Agric 10:111–117CrossRefGoogle Scholar
  73. 73.
    Batlla D, Benech-Arnold RL (2014) Weed seed germination and the light environment: implications for weed management. Weed Biol Manag 14:77–87CrossRefGoogle Scholar
  74. 74.
    Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol 33:481–518CrossRefGoogle Scholar
  75. 75.
    Kruk B, Insausti P, Razul A, Benech-Arnold RL (2006) Light and thermal environments as modified by a wheat crop: effects on weed seed germination. J Appl Ecol 43:227–236CrossRefGoogle Scholar
  76. 76.
    Juroszek P, Gerhards R (2004) Photocontrol of weeds. J Agronom Crop Sci 190:402–415CrossRefGoogle Scholar
  77. 77.
    Scopel AL, Ballaré CL, Sánchez RA (1991) Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ 14:501–508CrossRefGoogle Scholar
  78. 78.
    Batlla D, Verges V, Benech-Arnold RL (2003) A quantitative analysis of seed responses to cycle-doses of fluctuating temperatures in relation to dormancy level. Development of a thermal-time model for Polygonum aviculare L. seeds. Seed Sci Res 13:197–207CrossRefGoogle Scholar
  79. 79.
    Batlla D, Benech-Arnold RL (2005) Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytol 165:445–452CrossRefGoogle Scholar
  80. 80.
    Casal JJ, Sánchez RA (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329CrossRefGoogle Scholar
  81. 81.
    Forcella F (1998) Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci Res 8:201–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Roberto L. Benech-Arnold
    • 1
    Email author
  • M. Verónica Rodriguez
    • 2
  • Diego Batlla
    • 3
  1. 1.IFEVA – Cátedra de Cultivos Industriales/CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.IFEVA – Cátedra de Fisiología Vegetal/CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.IFEVA – Cátedra de Cerealicultura/CONICET-Universidad de Buenos AiresBuenos AiresArgentina

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations