Crop Science pp 73-106 | Cite as

Crop Radiation Capture and Use Efficiency

  • Erik H. MurchieEmail author
  • Alexandra Townsend
  • Matthew Reynolds
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



The C3 pathway of photosynthesis, found in most plant species, e.g., rice, potato, wheat.


The C4 pathway of photosynthesis, found in some tropical species, e.g., maize, sugar cane, sorghum


Photosynthetically active radiation. Solar radiation in the wavelength region 400–700 nm.


Radiation use efficiency, the ratio of biomass produced per unit radiation intercepted

Definition of the Subject and Its Importance

The rate of growth (the rate of the accumulation of dry matter) of all plants is entirely dependent on the interception of energy (electromagnetic radiation) from the sun in the wavelength range 400–700 nm, known as photosynthetically active radiation (PAR). This energy is utilized by photosynthesis to synthesize carbohydrates and other biological molecules needed for essential plant processes.

The amount of energy intercepted or captured by the whole plant and community system (the canopy) is determined by the organization of leaves into a 3-dimensional...


  1. 1.
    Sheehy JE, Mitchell PL, Hardy B (2008) Charting new pathways to C4 rice. World Scientific, New JerseyCrossRefGoogle Scholar
  2. 2.
    Cassman KG (1994) Breaking the yield barrier. In: Proceedings of a workshop on rice yield potential in favourable environmentsGoogle Scholar
  3. 3.
    Laborte AG, de Bie KCAJM, Smaling EMA, Moya PF, Boling AA, Van Ittersum MK (2012) Rice yields and yield gaps in Southeast Asia: past trends and future outlook. Eur J Agron 36:9–20CrossRefGoogle Scholar
  4. 4.
    Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257PubMedCrossRefGoogle Scholar
  6. 6.
    Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918PubMedCrossRefGoogle Scholar
  7. 7.
    Moore G (2007) Living with the Earth: concepts in environmental health science, 3rd edn. CRC Press, LondonGoogle Scholar
  8. 8.
    Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159PubMedCrossRefGoogle Scholar
  9. 9.
    Peltonen-Sainio P, Jauhiainen L, Laurila IP (2009) Cereal yield trends in northern European conditions: changes in yield potential and its realisation. Field Crop Res 110:85–90CrossRefGoogle Scholar
  10. 10.
    Finger R (2010) Evidence of slowing yield growth – the example of Swiss cereal yields. Food Policy 35:175–182CrossRefGoogle Scholar
  11. 11.
    Gouache D, Gate P, Charmet G, Brisson N, Huard F, Oury F-X (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212CrossRefGoogle Scholar
  12. 12.
    Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293PubMedCrossRefGoogle Scholar
  13. 13.
    Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371PubMedCrossRefGoogle Scholar
  15. 15.
    Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour 34:179–204CrossRefGoogle Scholar
  16. 16.
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedCrossRefGoogle Scholar
  17. 17.
    Wang G, Ji M, Deng J, Wang Z, Fan Z, Liu J, Brown JH, Ran J, Wang Y (2012) From the cover: models and tests of optimal density and maximal yield for crop plants. Proc Natl Acad Sci 109:15823–15828PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper J (1970) Potential production and energy conversion in temperate and tropical grasses. Bureau of Pastures and Forage Crops, AberystwythGoogle Scholar
  19. 19.
    Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans R Soc B Biol Sci 281:277–294CrossRefGoogle Scholar
  20. 20.
    Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66PubMedCrossRefGoogle Scholar
  21. 21.
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ et al (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci 112:8529–8536PubMedCrossRefGoogle Scholar
  22. 22.
    Slattery RA, Ort DR (2015) Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiol 168:383–392PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hesketh JD, Musgrave RB (1962) Photosynthesis under field conditions IV. Light studies with individual corn leaves. Crop Sci 2:311–315CrossRefGoogle Scholar
  24. 24.
    Mock JJ, Pearce RB (1975) Ideotype of maize. Euphytica 24:613–623CrossRefGoogle Scholar
  25. 25.
    Acreche MM, Briceño-Félix G, Martín Sánchez JA, Slafer GA (2009) Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crop Res 110:91–97CrossRefGoogle Scholar
  26. 26.
    Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265CrossRefGoogle Scholar
  27. 27.
    Watson DJ (1952) The physiological basis of variation in yield. Adv Agron 4:101–145CrossRefGoogle Scholar
  28. 28.
    de Wit CT (1959) Potential photosynthesis of crop surfaces. Neth J Agric Sci 7:141–149Google Scholar
  29. 29.
    Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72CrossRefGoogle Scholar
  30. 30.
    Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494PubMedCrossRefGoogle Scholar
  31. 31.
    Gallagher JN, Biscoe PV (1978) Radiation absorption, growth and yield of cereals. J Agric Sci 91:47–60CrossRefGoogle Scholar
  32. 32.
    Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Mitchell P, Sheehy JE, Woodward F (1998) Potential yields and the efficiency of radiation use in rice, IRRI discussed paper no. 32Google Scholar
  34. 34.
    Garcia R, Kanemasu ET, Blad BL, Bauer A, Hatfield JL, Major DJ, Reginato RJ, Hubbard KG (1988) Interception and use efficiency of light in winter wheat under different nitrogen regimes. Agric For Meteorol 44:175–186CrossRefGoogle Scholar
  35. 35.
    Hanan NP, Prince SD, Bégué A (1995) Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data. Agric For Meteorol 76:259–276CrossRefGoogle Scholar
  36. 36.
    Marshall B, Willey RW (1983) Radiation interception and growth in an intercrop of pearl millet/groundnut. Field Crop Res 7:141–160CrossRefGoogle Scholar
  37. 37.
    De Vries FWTP, Brunsting AHM, Van Laar HH (1974) Products, requirements and efficiency of biosynthesis a quantitative approach. J Theor Biol 45:339–377CrossRefGoogle Scholar
  38. 38.
    Stadt KJ, Gendron F, Lieffers VJ, Messier C, Comeau PG (1999) Predicting and managing light in the understory of boreal forests. Can J For Res 29:796–811CrossRefGoogle Scholar
  39. 39.
    Nobel P, Forseth I, Long S (1993) Canopy structure and light interception. In: Hall D, Scurlock J, Bohlar-Nordenkampf H, Leegood R, Long S (eds) Photosynthesis and production in a changing environment. A field and laboratory manual. Chapman & Hall, London, pp 79–90Google Scholar
  40. 40.
    Norman J, Campbell G (1989) Canopy structure. In: Pearc RW (ed) Plant physiological ecology: field methods and instrumentation. Kluwer Academic, Dordrecht, pp 321–325Google Scholar
  41. 41.
    Duncan WG (1971) Leaf angles, leaf area, and canopy photosynthesis1. Crop Sci 11:482CrossRefGoogle Scholar
  42. 42.
    Norman J (1980) Interfacing leaf and canopy light interception models. In: Heske JD (ed) Predicting photosynthesis for ecosystem models, vol 2. CRC Press, Boca Raton, pp 49–67Google Scholar
  43. 43.
    Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93:1477–1489PubMedCrossRefGoogle Scholar
  44. 44.
    Niklas PJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press, ChicagoGoogle Scholar
  45. 45.
    Coyne DP (1980) Modification of plant architecture and crop yield by breeding. Hortscience 15:244–247Google Scholar
  46. 46.
    Wolfe M (1985) The current status and prospects of multiline cultivars and variety mixes for disease resistance. Annu Rev Phytopathol 23:251–273CrossRefGoogle Scholar
  47. 47.
    Jung G, Coyne DP, Skroch PW, Nienhuis J, Arnaud-Santana E, Bokosi J, Ariyarathne HM, Steadman JR, Beaver JS, Kaeppler SM (1996) Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Am Soc Hortic Sci 121:794–803CrossRefGoogle Scholar
  48. 48.
    Ando K, Grumet R, Terpstra K, Kelly J (2007) Manipulation of plant architecture to enhance crop disease control. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 2:26Google Scholar
  49. 49.
    Grumet R, Colle M, Ando K, Xie D, Havenga L, Switzenberg J (2013) Modified plant architecture to enhance crop disease control: genetic control and possible value of upright fruit position in cucumber. Eur J Plant Pathol 135:545–560CrossRefGoogle Scholar
  50. 50.
    Song Q, Zhang G, Zhu X-G (2013) Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2 – a theoretical study using a mechanistic model of canopy photosynthesis. Funct Plant Biol 40:109–124CrossRefGoogle Scholar
  51. 51.
    Reynolds MP, Van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot 51:459–473PubMedCrossRefGoogle Scholar
  52. 52.
    Khush GS (2005) What it will take to feed 50 billion rice consumers in 2030. Plant Mol Biol 59:1–6PubMedCrossRefGoogle Scholar
  53. 53.
    Khan MH, Dar ZA, Dar SA (2015) Breeding strategies for improving rice yield – a review. Agric Sci 6:467–478Google Scholar
  54. 54.
    Rötter RP, Tao F, Höhn JG, Palosuo T (2015) Use of crop simulation modelling to aid ideotype design of future cereal cultivars. J Exp Bot 66:3463–3476PubMedCrossRefGoogle Scholar
  55. 55.
    Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  56. 56.
    Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L). Maydica 50:193–202Google Scholar
  57. 57.
    Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17PubMedCrossRefGoogle Scholar
  58. 58.
    Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9PubMedCrossRefGoogle Scholar
  59. 59.
    Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, a Sparks C, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Murchie EH, Hubbart S, Chen Y, Peng S, Horton P (2002) Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999–2010PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Valladares F, Niinemets U (2007) The architecture of plant crowns: from design rules to light capture and performance. In: Functional plant ecology. CRC Press, Boca Raton, pp 101–150CrossRefGoogle Scholar
  62. 62.
    Clendon JHM, Millen GGM (1979) Leaf angle: an adaptive feature of sun and shade leaves. Bot Gaz 140:437CrossRefGoogle Scholar
  63. 63.
    Hodanova D (1979) Sugar beet canopy photosynthesis as limited by leaf age and irradiance estimation by models. Photosynthetica 13:376–385Google Scholar
  64. 64.
    Turitzin SN, Drake BG (1981) The effect of a seasonal change in canopy structure on the photosynthetic efficiency of a salt marsh. Oecologia 48:79–84PubMedCrossRefGoogle Scholar
  65. 65.
    Gutschick V, Wiegel F (1988) Optimizing the canopy photosynthetic rate by patterns of investment in specific leaf mass. Am Nat 132:67–86CrossRefGoogle Scholar
  66. 66.
    Norman A (2012) Soybean physiology, agronomy, and utilization. Elsevier, OxfordGoogle Scholar
  67. 67.
    Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Larque Saavedra A (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475CrossRefGoogle Scholar
  68. 68.
    Long SP, Zhu X-G, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas SC, Winner WE (2000) A rotated ellipsoidal angle density function improves estimation of foliage inclination distributions in forest canopies. Agric For Meteorol 100:19–24CrossRefGoogle Scholar
  70. 70.
    Niinemets Ü, Sparrow A, Cescatti A (2005) Light capture efficiency decreases with increasing tree age and size in the southern hemisphere gymnosperm Agathis australis. Trees Struct Funct 19:177–190CrossRefGoogle Scholar
  71. 71.
    Niinemets U, Al Afas N, Cescatti A, Pellis A, Ceulemans R (2004) Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiol 24:141–154PubMedCrossRefGoogle Scholar
  72. 72.
    Kim HS, Palmroth S, Thérézien M, Stenberg P, Oren R (2011) Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions. Tree Physiol 31:30–47PubMedCrossRefGoogle Scholar
  73. 73.
    Vince Ö, Zoltán M (2011) Plant physiology. Debreceni Egyetem/Nyugat-Magyarországi Egyetem/Pannon Egyetem, DebrecenGoogle Scholar
  74. 74.
    Burgess A, Retkute R, Pound M, Preston S, Pridmore T, Foulkes M, Jensen O, Murchie E (2015) High-resolution 3D structural data quantifies the impact of photoinhibition on long term carbon gain in wheat canopies in the field. Plant Physiol 169:1192. Scholar
  75. 75.
    Burgess AJ, Retkute R, Pound MP, Mayes S, Murchie EH (2017) Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems. Ann Bot 119:517PubMedPubMedCentralGoogle Scholar
  76. 76.
    Burgess AJ, Retkute R, Herman T, Murchie EH (2017) Exploring relationships between canopy architecture, light distribution, and photosynthesis in contrasting rice genotypes using 3D canopy reconstruction. Front Plant Sci 8:734PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283:1456–1457CrossRefGoogle Scholar
  78. 78.
    Valladares F, Pearcy RW (1999) The geometry of light interception by shoots of Heteromeles arbutifolia: morphological and physiological consequences for individual leaves. Oecologia 121:171–182PubMedCrossRefGoogle Scholar
  79. 79.
    McLean G, Paszkiewicz S, Messina C, Zinselmeier C, Doherty A, Schussler J, Cooper M, Dong Z, Hammer GL (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299CrossRefGoogle Scholar
  80. 80.
    Russell G, Jarvis PG, Monteith JL (1989) Absorption of radiation by canopies and stand growth. In: Plant canopies their growth, form function, vol 31. Cambridge University Press, Cambridge, pp 21–39CrossRefGoogle Scholar
  81. 81.
    Murchie E, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448CrossRefGoogle Scholar
  82. 82.
    Murchie EH, Yang J, Hubbart S, Horton P, Peng S (2002) Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J Exp Bot 53:2217–2224PubMedCrossRefGoogle Scholar
  83. 83.
    Ackerly DD (1992) Light, leaf age, and leaf nitrogen concentration in a tropical vine. Oecologia 89:596–600PubMedCrossRefGoogle Scholar
  84. 84.
    Townsend AJ, Retkute R, Chinnathambi K, Randall JW, Foulkes J, Carmo-Silva E, Murchie EH (2017) Suboptimal acclimation of photosynthesis to light in wheat canopies. Plant Physiol 2017:01213Google Scholar
  85. 85.
    Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Boccalandro HE, Ploschuk EL, Yanovsky MJ, Sánchez RA, Gatz C, Casal JJ (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fleming AJ (2005) The control of leaf development. New Phytol 166:9–20PubMedCrossRefGoogle Scholar
  88. 88.
    Ong C, Monteith JL (1992) Canopy establishment: light capture and loss by crop canopies. In: Baker N, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 1–9Google Scholar
  89. 89.
    Watanabe T, Hanan JS, Room PM, Hasegawa T, Nakagawa H, Takahashi W (2005) Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot 95:1131–1143PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll cells. Planta 170:416–420PubMedCrossRefGoogle Scholar
  91. 91.
    Hay RKM, Porter JR (2006) The physiology of crop yield. Blackwell, Oxford. xiii + 314Google Scholar
  92. 92.
    Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548CrossRefGoogle Scholar
  93. 93.
    Murchie E, Chen Y, Hubbart S, Peng S, Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol 119:553–564PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ehleringer J, Bjorkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59:86–90PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Covshoff S, Hibberd JM (2012) Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol 23:209–214PubMedCrossRefGoogle Scholar
  96. 96.
    Leegood RC (2013) Strategies for engineering C4 photosynthesis. J Plant Physiol 170:378–388PubMedCrossRefGoogle Scholar
  97. 97.
    Karki S, Rizal G, Quick WP (2013) Improvement of photosynthesis in rice (Oryza sativa L) by inserting the C4 pathway. Rice 6:1–8CrossRefGoogle Scholar
  98. 98.
    Schuler ML, Mantegazza O, Weber APM (2016) Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J 87:51–65PubMedCrossRefGoogle Scholar
  99. 99.
    Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20CrossRefGoogle Scholar
  100. 100.
    Scafaro AP, Negrini ACA, O’Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, Badger MR, Millar AH, Atkin OK (2017) The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. Plant Methods 13:16PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AMO, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Beadle CL, Long SP (1985) Photosynthesis – is it limiting to biomass production? Biomass 8:119–168CrossRefGoogle Scholar
  103. 103.
    Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL (2014) Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C. J Exp Bot 65:5401–5413PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Araus JL, Brown HR, Febrero A, Bort J, Serret MD (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ 16:383–392CrossRefGoogle Scholar
  105. 105.
    Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321CrossRefGoogle Scholar
  106. 106.
    Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L): a review. Field Crop Res 67:35–49CrossRefGoogle Scholar
  107. 107.
    Inthapan P, Fukai S (1988) Growth and yield of rice cultivars under sprinkler irrigation in South-Eastern Queensland 2 comparison with maize and grain sorghum under wet and dry conditions. Aust J Exp Agric 28:243–248CrossRefGoogle Scholar
  108. 108.
    Zhang Y, Tang Q, Zou Y, Li D, Qin J, Yang S, Chen L, Xia B, Peng S (2009) Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crop Res 114:91–98CrossRefGoogle Scholar
  109. 109.
    Rochette P, Desjardins RL, Pattey E, Lessard R (1995) Crop net carbon dioxide exchange rate and radiation use efficiency in soybean. Agron J 87:22–28CrossRefGoogle Scholar
  110. 110.
    Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014CrossRefGoogle Scholar
  111. 111.
    Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32:1525–1537PubMedCrossRefGoogle Scholar
  112. 112.
    Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L). J Exp Bot 56:2107–2118PubMedCrossRefGoogle Scholar
  113. 113.
    Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19PubMedCrossRefGoogle Scholar
  114. 114.
    Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196:201–210CrossRefGoogle Scholar
  115. 115.
    Connor D, Loomis R, Cassman KG (2011) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  116. 116.
    Foulkes MJ, Murchie EH (2011) Optimizing canopy physiology traits to improve the nutrient utilization efficiency of crops. In: The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, Chichester, pp 65–82CrossRefGoogle Scholar
  117. 117.
    Pask A, Pietragalla J, Mullan D (2012) Physiological breeding II: a field guide to wheat phenotyping. CIMMYT, MexicoGoogle Scholar
  118. 118.
    Hikosaka K, Terashima I, Katoh S (1994) Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav) grown horizontally to avoid mutual shading of leaves. Oecologia 97:451–457PubMedCrossRefGoogle Scholar
  119. 119.
    Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101:504–513PubMedCrossRefGoogle Scholar
  120. 120.
    Niinemets Ü, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993PubMedCrossRefGoogle Scholar
  121. 121.
    Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes MJ, Martre P (2012) Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiol 160:1479–1490PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Harasim E, Wesolowski M, Kwiatowski CA, Cierpiala R (2016) The effect of retardants and nitrogen fertilization on winter wheat canopy structure. Rom Agric Res 33:29–39Google Scholar
  123. 123.
    Herman T, Murchie E, Ali A (2015) Rice production and climate change: a case study of Malaysian rice. Pertanika J Trop Agric Sci 38:321–328Google Scholar
  124. 124.
    Hall AJ, Connor DJ, Sadras VO (1995) Radiation-use efficiency of sunflower crops: effects of specific leaf nitrogen and ontogeny. Field Crop Res 41:65–77CrossRefGoogle Scholar
  125. 125.
    Sinclair TR, Shiraiwa T (1993) Soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse radiation. Crop Sci 33:808CrossRefGoogle Scholar
  126. 126.
    Muchow RC, Sinclair TR (1994) Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci 34:721–727CrossRefGoogle Scholar
  127. 127.
    Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90CrossRefGoogle Scholar
  128. 128.
    Muchow RC (1989) Comparative productivity of maize, sorghum and pearl millet in a semi-arid tropical environment II effect of water deficits. Field Crop Res 20:207–219CrossRefGoogle Scholar
  129. 129.
    Singh P, Rama Y (1989) Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer arietinum L). Agric For Meteorol 48:317CrossRefGoogle Scholar
  130. 130.
    Sinclair TR, Muchow RC (1999) Occam’s Razor, radiation-use efficiency, and vapor pressure deficit. Field Crop Res 62:239–243CrossRefGoogle Scholar
  131. 131.
    Watanabe N, Evans J, Chow W (1994) Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aust J Plant Physiol 21:169Google Scholar
  132. 132.
    Gutiérrez-Rodríguez M, Reynolds MP, Larqué-Saavedra A (2000) Photosynthesis of wheat in a warm, irrigated environment II. Traits associated with genetic gains in yield. Field Crop Res 66:51–62CrossRefGoogle Scholar
  133. 133.
    Peng S, Laza RC, Visperas RM, Sanico AL, Cassman KG, Khush GS (2000) Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci 40:307–314CrossRefGoogle Scholar
  134. 134.
    Hubbart S, Peng S, Horton P, Chen Y, Murchie EH (2007) Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J Exp Bot 58:3429–3438PubMedCrossRefGoogle Scholar
  135. 135.
    Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552PubMedCrossRefGoogle Scholar
  136. 136.
    Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475–485PubMedCrossRefGoogle Scholar
  137. 137.
    Zhu X-G, De Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Walters R, Horton P (1994) Acclimation of Arabidopsis thaliana to the light environment – changes in composition of the photosynthetic apparatus. Planta 195:248–256CrossRefGoogle Scholar
  139. 139.
    Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139PubMedCrossRefGoogle Scholar
  140. 140.
    Walters R, Rogers J, Shephard F, Horton P (1999) Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209:517–527PubMedCrossRefGoogle Scholar
  141. 141.
    Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447PubMedCrossRefGoogle Scholar
  142. 142.
    Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260PubMedCrossRefGoogle Scholar
  143. 143.
    Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant Cell Environ 38:1404–1417PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Pons TL (2012) Interaction of temperature and irradiance effects on photosynthetic acclimation in two accessions of Arabidopsis thaliana. Photosynth Res 113:207–219PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Retkute R, Smith-Unna S, Smith R, Burgess A, Jensen O, Johnson G, Preston S, Murchie E (2015) Exploiting heterogeneous environments: does photosynthetic acclimation optimize carbon gain in fluctuating light? J Exp Bot 66:2437. erv055PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Athanasiou K, Dyson BC, Webster RE, Johnson GN (2010) Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol 152:366–373PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Taylor SH, Long SP (2017) Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos Trans R Soc B Biol Sci 372:20160543CrossRefGoogle Scholar
  148. 148.
    Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedCrossRefGoogle Scholar
  149. 149.
    Ruban A, Berera R, Ilioaia C, Van Stokkum I, Kennis J, Pascal A, Van Amerongen H, Robert B, Horton P, Van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578PubMedCrossRefGoogle Scholar
  150. 150.
    Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149PubMedCrossRefGoogle Scholar
  151. 151.
    Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660PubMedCrossRefGoogle Scholar
  153. 153.
    Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185Google Scholar
  154. 154.
    Acreche MM, Slafer GA (2009) Grain weight, radiation interception and use efficiency as affected by sink-strength in Mediterranean wheats released from 1940 to 2005. Field Crop Res 110:98–105CrossRefGoogle Scholar
  155. 155.
    Berry PM, Spink JH, Foulkes MJ, Wade A (2003) Quantifying the contributions and losses of dry matter from non-surviving shoots in four cultivars of winter wheat. Field Crop Res 80:111–121CrossRefGoogle Scholar
  156. 156.
    Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310PubMedCrossRefGoogle Scholar
  157. 157.
    Setter T, Conocono E, Egdane J, Kropff M (1995) Possibility of increasing yield potential of rice by reducing panicle height in the canopy I. Effects of panicles on light interception and canopy photosynthesis. Aust J Plant Physiol 22:441–451Google Scholar
  158. 158.
    Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83CrossRefGoogle Scholar
  159. 159.
    Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape JW (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crop Res 103:11–24CrossRefGoogle Scholar
  160. 160.
    Yang J, Zhang J, Liu L, Wang Z, Zhu Q (2002) Carbon remobilization and grain filling in japonica/indica hybrid rice subjected to postanthesis water deficits. Agron J 94:102–109CrossRefGoogle Scholar
  161. 161.
    Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci 145:139–149CrossRefGoogle Scholar
  162. 162.
    a Slafer G, Calderini DF, Miralles DJ, Dreccer MF (1994) Preanthesis shading effects on the number of grains of 3 bread wheat cultivars of different potential number of grains. Field Crop Res 36:31–39CrossRefGoogle Scholar
  163. 163.
    Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186PubMedCrossRefGoogle Scholar
  164. 164.
    Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396CrossRefGoogle Scholar
  165. 165.
    Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419PubMedCrossRefGoogle Scholar
  166. 166.
    Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460CrossRefGoogle Scholar
  167. 167.
    Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55:1010–1024PubMedCrossRefGoogle Scholar
  169. 169.
    Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Plant science: cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  170. 170.
    Hammer GL, Wright GC (1994) A theoretical analysis of nitrogen and radiation effects on radiation use efficiency in peanut. Aust J Agric Res 45:575–589CrossRefGoogle Scholar
  171. 171.
    Loomis R, Amthor JS (1996) Limits to yield revisited. In: Reynolds M, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 76–89Google Scholar
  172. 172.
    IPCC (2010) Summary for policymakers. In: Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 1–30Google Scholar
  173. 173.
    Parry M, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of hunger. Philos Trans R Soc Lond Ser B Biol Sci 360:2125–2138CrossRefGoogle Scholar
  174. 174.
    Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101:9971–9975PubMedCrossRefGoogle Scholar
  175. 175.
    Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639PubMedCrossRefGoogle Scholar
  176. 176.
    Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food insecurity treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos Trans R Soc B Biol Sci 360:2011–2020CrossRefGoogle Scholar
  177. 177.
    Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610PubMedCrossRefGoogle Scholar
  178. 178.
    Quick WP, Fichtner K, Schulze ED, Wendler R, Leegood RC, Mooney H, Rodermel S, Bogorad L, Stitt M (1992) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcs IV. Impact on photosynthesis in conditions of altered nitrogen supply. Planta 188:522–531PubMedCrossRefGoogle Scholar
  179. 179.
    Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333PubMedCrossRefGoogle Scholar
  180. 180.
    Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730PubMedCrossRefGoogle Scholar
  181. 181.
    Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579CrossRefGoogle Scholar
  182. 182.
    Zhu G, Spreitzer RJ (1996) Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency. J Biol Chem 271:18494–18498PubMedCrossRefGoogle Scholar
  183. 183.
    Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ (2016) Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis. J Exp Bot 67:1827–1838PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    von Caemmerer S, Evans JR (2010) Enhancing C3 photosynthesis. Plant Physiol 154:589–592CrossRefGoogle Scholar
  185. 185.
    Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29:331–339PubMedCrossRefGoogle Scholar
  186. 186.
    Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11PubMedGoogle Scholar
  187. 187.
    Medrano H, Keys AJ, Lawlor DW, Parry MAJ, Azconbieto J, Delgado E (1995) Improving plant-production by selection for survival at low CO2 concentrations. J Exp Bot 46:1389–1396CrossRefGoogle Scholar
  188. 188.
    Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599PubMedCrossRefGoogle Scholar
  189. 189.
    Dalal J, Lopez H, Vasani NB, Hu Z, Swift JE, Yalamanchili R, Dvora M, Lin X, Xie D, Qu R, Sederoff HW (2015) A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol Biofuels 8:175PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56–63PubMedCrossRefGoogle Scholar
  191. 191.
    Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000PubMedCrossRefGoogle Scholar
  192. 192.
    Sage R, Sage T (2007) Learning from nature to develop strategies for the directed evolution of C4 rice. In: Sheehy J, Mitchell P, Hardy B (eds) Charting new pathways to C4 rice. International Rice Research Institute, Los BanosGoogle Scholar
  193. 193.
    Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber APM (2010) An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiol 155:142–156PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Furbank RT, Von Caemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856CrossRefGoogle Scholar
  195. 195.
    Zhu XG, Shan L, Wang Y, Quick WP (2010) C4 rice – an ideal arena for systems biology research. J Integr Plant Biol 52:762–770PubMedCrossRefGoogle Scholar
  196. 196.
    Kajala K, Covshoff S, Karki S, Woodfield H, Tolley B, Dionora M, Mogul R, Mabilangan A, Danila F, Hibberd J, WP Q (2011) Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J Exp Bot 62:3001–3010PubMedCrossRefGoogle Scholar
  197. 197.
    Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231PubMedCrossRefGoogle Scholar
  198. 198.
    Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314PubMedCrossRefGoogle Scholar
  199. 199.
    Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating- mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461PubMedCrossRefGoogle Scholar
  200. 200.
    Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26PubMedCrossRefGoogle Scholar
  201. 201.
    Price GD, Pengelly J, Forster B, Du J, Whitney S, von Caemmerer S, Badger M, Howitt S, Evans J (2012) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753PubMedCrossRefGoogle Scholar
  202. 202.
    Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92PubMedCrossRefGoogle Scholar
  203. 203.
    Frenkel M, Bellafiore S, Rochaix JD, Jansson S (2007) Hierarchy amongst photosynthetic acclimation responses for plant fitness. Physiol Plant 129:455–459CrossRefGoogle Scholar
  204. 204.
    Raven JR (1994) The cost of photoinhibition to plant communities. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scitific, OxfordGoogle Scholar
  205. 205.
    Hubbart S, Ajigboye OO, Horton P, Murchie EH (2012) The photoprotective protein PsbS exerts control over CO2 assimilation rate in fluctuating light in rice. Plant J 71:402–412PubMedGoogle Scholar
  206. 206.
    Ware M, Belgio E, Ruban A (2014) Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. J Exp Bot 66:1259. eru477PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Ware M, Belgio E, Ruban A (2015) Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 126:261–274PubMedCrossRefGoogle Scholar
  208. 208.
    Ware M, Dall’Osto L, Ruban A (2016) An in vivo quantitative comparison of photoprotection in Arabidopsis xanthophyll mutants. Front Plant Sci 7:841PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861PubMedCrossRefGoogle Scholar
  210. 210.
    Zhu X, Ort D, Whitmarsh J, Long S (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Slafer GA, Savin R (1994) Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crop Res 37:39–49CrossRefGoogle Scholar
  213. 213.
    Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Reynolds MP, Pask AJ, Hoppitt WJ, Sonder K, Sukumaran S, Molero G, Saint Pierre C, Payne T, Singh RP, Braun HJ, Gonzalez FG (2017) Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat. Euphytica. 213(11):257Google Scholar
  215. 215.
    Ort D, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Slattery RA, VanLoocke A, Bernacchi CJ, Zhu X-G, Ort DR (2017) Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:549PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR (2017) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol, pp-01401Google Scholar
  218. 218.
    Evans J (2013) Improving photosynthesis. Plant Physiol 162:1780–1793PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Lüttge U, Cánovas F, Matyssek R (2016) Progress in botany, vol 77. Springer, HeidelbergGoogle Scholar
  220. 220.
    Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129PubMedCrossRefGoogle Scholar
  221. 221.
    Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607PubMedCrossRefGoogle Scholar
  222. 222.
    Neeraja CN, Vemireddy LR, Malathi S, Siddiq EA (2009) Identification of alternate dwarfing gene sources to widely used Dee-Gee-Woo-Gen allele of sd1 gene by molecular and biochemical assays in rice (Oryza sativa L). Electron J Biotechnol 12Google Scholar
  223. 223.
    Reynolds M, Langridge P (2016) Physiological breeding. Curr Opin Plant Biol 31:162–171PubMedCrossRefGoogle Scholar
  224. 224.
    Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129CrossRefGoogle Scholar
  225. 225.
    Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F (2016) High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol 212:269–281PubMedCrossRefGoogle Scholar
  226. 226.
    Coops NC, Hilker T, Hall FG, Nichol CJ, Drolet GG (2010) Estimation of light-use efficiency of terrestrial ecosystems from space: a status report. Bioscience 60:788–797CrossRefGoogle Scholar
  227. 227.
    Hilker T, Coops NC, Hall FG, Nichol CJ, Lyapustin A, Black TA, Wulder MA, Leuning R, Barr A, Hollinger DY, Munger B, Tucker CJ (2011) Inferring terrestrial photosynthetic light use efficiency of temperate ecosystems from space. J Geophys Res Biogeosci 116:G03014CrossRefGoogle Scholar
  228. 228.
    Flexas J, Escalona JM, Evain S, Gulías J, Moya I, Osmond CB, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants, In: European Special Agency, pp 26–29Google Scholar
  229. 229.
    Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefGoogle Scholar
  230. 230.
    Quan L, Tan P, Zeng G, Yuan L, Wang J, Kang SB (2006) Image-based plant modeling. ACM Trans Graph 25:599CrossRefGoogle Scholar
  231. 231.
    Pound M, French A, Murchie E, Pridmore T (2014) Automated recovery of 3D models of plant shoots from multiple colour images. Plant Physiol 144:1688–1698CrossRefGoogle Scholar
  232. 232.
    Zhu J, van der Werf W, Anten N, Vos J, Evers J (2015) The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol 207:1213–1222PubMedCrossRefGoogle Scholar
  233. 233.
    Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866PubMedCrossRefGoogle Scholar
  234. 234.
    Santos T, Oliviera A (2012) Image-based 3D digitizing for plant architecture analysis and phenotyping. In: Workshop on industry applications SIBGRAPI 2012 (XXV conference on graphics patterns images), Ouro PretoGoogle Scholar
  235. 235.
    White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112CrossRefGoogle Scholar
  236. 236.
    Brown PL, Doley D, Keenan RJ (2000) Estimating tree crown dimensions using digital analysis of vertical photographs. For Ecol Manag 100:199–212Google Scholar
  237. 237.
    Phattaralerphong J, Sinoquet H (2005) A method for 3D reconstruction of tree crown volume from photographs: assessment with 3D-digitized plants. Tree Physiol 25:1229–1242PubMedCrossRefGoogle Scholar
  238. 238.
    Patterson MF, Wiseman PE, Winn MF, Lee SM, Araman PA (2011) Effects of photographic distance on tree crown attributes calculated using urbancrowns image analysis software. Arboricult Urban For 37:173–179Google Scholar
  239. 239.
    Ivanov N, Boissard P, Chapron M, Andrieu B (1995) Computer stereo plotting for 3-D reconstruction of a maize canopy. Agric For Meteorol 75:85–102CrossRefGoogle Scholar
  240. 240.
    Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Kawamura K, Hibrand-Saint Oyant L, Foucher F, Thouroude T, Loustau S (2014) Kernel methods for phenotyping complex plant architecture. J Theor Biol 342:83–92PubMedCrossRefGoogle Scholar
  242. 242.
    Burgess AJ, Retkute R, Preston SP, Jensen OE, Pound MP, Pridmore TP, Murchie EH (2016) The 4-dimensional plant: effects of wind-induced canopy movement on light fluctuations and photosynthesis. Front Plant Sci 7:1392PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Borel CC, Gerstl SAW, Powers BJ (1991) The radiosity method in optical remote sensing of structured 3-D surfaces. Remote Sens Environ 36:13–44CrossRefGoogle Scholar
  244. 244.
    Goel N, Rozehnal I, Thompson R (1991) A computer graphics based model for scattering from objects of arbitrary shapes in the optical region. Remote Sens Environ 36:73–104CrossRefGoogle Scholar
  245. 245.
    Chelle M, Bouatouch K, Andrieu B (1998) Nested radiosity for plant canopies. Vis Comput 14:109–125CrossRefGoogle Scholar
  246. 246.
    Evers JB, Vos J, Fournier C, Andrieu B, Chelle M, Struik PC (2005) Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol 166:801–812PubMedCrossRefGoogle Scholar
  247. 247.
    Chelle M, Andrieu B (2007) Modelling the light environment of virtual crop canopies. In: Functional-structural plant modelling in crop production. Springer, Dordrecht, pp 75–89CrossRefGoogle Scholar
  248. 248.
    Chelle M (2005) Phylloclimate or the climate perceived by individual plant organs: what is it? How to model it? What for? New Phytol 166:781–790PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Erik H. Murchie
    • 1
    Email author
  • Alexandra Townsend
    • 1
  • Matthew Reynolds
    • 2
  1. 1.Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
  2. 2.International Maize and Wheat Improvement Centre (CIMMYT)Mexico D.F.Mexico

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations