Crop Science pp 493-503 | Cite as

Phenotyping: New Crop Breeding Frontier

  • José Luis ArausEmail author
  • Shawn Carlisle Kefauver
  • Mainassara Zaman-Allah
  • Mike S. Olsen
  • Jill E. Cairns
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Genetic gain

is the amount of increase in performance achieved per unit time per unit investment through artificial selection.


a simple numerical indicator used to analyze remote sensing measurements, often from unmanned aerial vehicles, to determine a specific trait of the standing plant or of the crop.


a predefined (e.g., FieldScanalyzer or Satellites) or adaptable structure (“phenopoles,” “phenomobiles,” UAVs, etc.) on which a sensor or combination of sensors may be mounted and integrated together to provide for mobility while maintaining precision and stability.


a scientific devices designed to measure a specific crop morphophysiological trait of interest at a specific level of interest (leaf, roots, soil, canopy), either by direct contact (e.g., chlorophyll meter, porometer, etc.) or remotely (i.e., imaging sensors) by implementing a specific set of nondestructive measurements.


specific crop morphophysiological characteristics of interest for...



This review chapter was supported by grants from the CGIAR Research Program MAIZE (to J.L.A., S.C.K., J.E.C. and M.Z-A.), the Spanish project AGL2016-76527-R (to J.L.A. and S.C.K.), the Bill & Melinda Gates Foundation and USAID funded Stress Tolerant Maize for Africa project (J.E.C., M.Z.A., M.S.O) and the CGIAR Excellence in Breeding Platform (J.E.C. M.Z.A, and M.S.O.).


  1. 1.
    Reynolds MP, Braun HJ, Cavalieri AJ, Chapotin S, Davies WJ, Ellul P, Feuillet C, Govaerts B, Kropff MJ, Lucas H, Nelson J (2017) Improving global integration of crop research. Science 357:359–360CrossRefGoogle Scholar
  2. 2.
    Abera Desta Z, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601CrossRefGoogle Scholar
  3. 3.
    Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61CrossRefGoogle Scholar
  4. 4.
    Araus JL, Kefauver SC, Zaman-Allah MA, Olsen MS, Cairns JE (2018) Translating high throughput phenotyping into genetic gain. Trends Plant Sci 1647.
  5. 5.
    Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320CrossRefGoogle Scholar
  6. 6.
    Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012a) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop Res 128:82–90CrossRefGoogle Scholar
  7. 7.
    Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412CrossRefGoogle Scholar
  8. 8.
    Fernandez-Gallego JA, Aparicio-Gutierrez N, Nieto-Taladriz MT, Araus JL, Kefauver SK. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images. Plant Methods 14:22Google Scholar
  9. 9.
    Zhou C, Liang D, Yang X, Xu B, Yang G (2018) Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms. Remote Sens 10:246. (registering DOI)CrossRefGoogle Scholar
  10. 10.
    Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Eeuwijk FV, Tardieu F (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172:749–764PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pauli D, Chapman SC, Bart R, Topp CN, Lawrence-Dill CJ, Poland J, Gore MA (2016) The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol 172:622–634PubMedPubMedCentralGoogle Scholar
  12. 12.
    Passioura JB, Angus JF (2010) Improving productivity of crops in water-limited environments. Adv Agron 106:37–75CrossRefGoogle Scholar
  13. 13.
    Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Essex, 464 ppGoogle Scholar
  14. 14.
    Li H, Rasheed A, Hickey LT, He Z (2018) Spotlight fast-forwarding genetic gain. Trends Plant Sci 23:184–186Google Scholar
  15. 15.
    Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Bänziger M, Pixley KV, Vivek BS, von Biljon A, Macrobert J (2017) Gains in maize genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179CrossRefGoogle Scholar
  16. 16.
    Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666CrossRefGoogle Scholar
  17. 17.
    Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192CrossRefGoogle Scholar
  18. 18.
    Chaikam V, Lopez LA, Martinez L, Burgeño J, Prasanna BM (2017) Identification of in vivo induced maternal haploids in maize using seedling traits. Euphytica 213:177CrossRefGoogle Scholar
  19. 19.
    Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371CrossRefGoogle Scholar
  20. 20.
    Deery DM, Rebetzke GJ, Jimenez-Berni JA, James RA, Condon AG, Bovill WD, Hutchinson P, Scarrow J, Davy R, Furbank RT (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808CrossRefGoogle Scholar
  21. 21.
    Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99CrossRefGoogle Scholar
  22. 22.
    Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291CrossRefGoogle Scholar
  23. 23.
    Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47:722–738CrossRefGoogle Scholar
  24. 24.
    Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR (2017) Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J Exp Bot.
  25. 25.
    Elazab A, Ordóñez RA, Savin R, Slafer GA, Araus JL (2016) Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques. Eur J Agron 73:11–24CrossRefGoogle Scholar
  26. 26.
    Gracia-Romero A, Kefauver SC, Vergara-Díaz O, Zaman-Allah MA, Prasanna BM, Cairns JE, Araus JL (2017) Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front Plant Sci 8:2004CrossRefGoogle Scholar
  27. 27.
    Kefauver SC, Vicente R, Vergara-Díaz O, Fernandez-Gallego JA, Kerfal S, Lopez A, Melichar JPE, Serret Molins MD, Araus JL (2017) Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front Plant Sci 8:1733CrossRefGoogle Scholar
  28. 28.
    Gracia-Romero A, Vergara-Díaz O, Thierfelder C, Cairns JE, Kefauver SC, Araus JL (2018) Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens 10:349Google Scholar
  29. 29.
    Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR, Pavek MJ (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123CrossRefGoogle Scholar
  30. 30.
    Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379CrossRefGoogle Scholar
  31. 31.
    Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460CrossRefGoogle Scholar
  32. 32.
    Jin X, Liu S, Baret F, Hemerlé M, Comar A (2017) Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens Env 2198:105–114CrossRefGoogle Scholar
  33. 33.
    Makanza R, Zaman-Allah M, Cairns JE, Magorokosho C, Tarekegne A, Olsen M, Prasanna BM (2018) High-throughput phenotyping of canopy cover and senescence in maize field trials using aerial digital canopy imaging. Remote Sens 10:330Google Scholar
  34. 34.
    Cabrera-Bosquet L, Sanchez C, Rosales A, Palacios-Rojas N, Araus JL (2010) Near-Infrared Reflectance Spectroscopy (NIRS) Assessment of δ18O and nitrogen and ash contents for improved yield potential and drought adaptation in maize. J Agric Food Chem 59:467–474CrossRefGoogle Scholar
  35. 35.
    White JW, Conley MM (2013) A flexible, low-cost cart for proximal sensing. Crop Sci 53:1646–1649CrossRefGoogle Scholar
  36. 36.
    Kim J, Lee S, Ahn H, Seo D, Park S, Choi C (2013) Feasibility of employing a smartphone as the payload in a photogrammetric UAV system. ISPRS J Photogramm Remote Sens 79:1–18CrossRefGoogle Scholar
  37. 37.
    Araus JL, Kefauver SC. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr Opin Plant Biol (second revision)Google Scholar
  38. 38.
    Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19CrossRefGoogle Scholar
  39. 39.
    Krishna KR (2017) Agricultural drones: a peaceful pursuit. APP (Apple Academic Press)/CRC Press (Taylor and Francis Group), Boca Raton, 425 pages. ISBN 9781771885959Google Scholar
  40. 40.
    Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887CrossRefGoogle Scholar
  41. 41.
    Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, Hornero A, Albà AH, Das B, Craufurd P, Olsen M (2015) Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11:35CrossRefGoogle Scholar
  42. 42.
    Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna BM (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Sec 5:345–360CrossRefGoogle Scholar
  43. 43.
    Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN (2012b) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci 52:1011–1020CrossRefGoogle Scholar
  44. 44.
    Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Bennett D, Barrett-Lennard EG, Mayer JE (2013) A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct Plant Biol 40(1):13Google Scholar
  45. 45.
    Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38:1765–1774CrossRefGoogle Scholar
  46. 46.
    Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336CrossRefGoogle Scholar
  47. 47.
    Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783CrossRefGoogle Scholar
  48. 48.
    Federer WT, Crossa J (2012) I.4 screening experimental designs for quantitative trait loci, association mapping, genotype-by environment interaction, and other investigations. Front Physiol 3:156Google Scholar
  49. 49.
    Jin Z, Zhuang Q, Tan Z, Dukes JS, Zheng B, Melillo JM (2016) Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology 22(9):3112–3126Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • José Luis Araus
    • 1
    Email author
  • Shawn Carlisle Kefauver
    • 2
  • Mainassara Zaman-Allah
    • 3
  • Mike S. Olsen
    • 4
  • Jill E. Cairns
    • 3
  1. 1.Section of Plant Physiology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.University of BarcelonaBarcelonaSpain
  3. 3.International Maize and Wheat Improvement Center (CIMMYT)HarareZimbabwe
  4. 4.CIMMYTNairobiKenya

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations