Advertisement

WTE: Decreasing the Entropy of Solid Wastes and Increasing Metal Recovery

  • Helmut RechbergerEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

Glossary

Material flow analysis (MFA)

Systematic assessment of the flows and stocks of materials within a system, defined in space and time

Statistical entropy

Developed by C.E. Shannon as part of his information theory and used as a measure for distributions in statistics; formally similar to the thermodynamic entropy of mixing

Statistical entropy analysis (SEA)

Entropy-based method, based on material flow analysis, for quantifying the concentrating effect of a process or system

Waste-to-energy (WTE)

Combustion of municipal solid waste (MSW) with energy recovery

Definition of the Subject and Its Importance

The turnover of materials used in a national economy has been described as the consumption of resources (low-entropy materials) that are used and transformed into wastes (high entropy materials): therefore, the economy is viewed as an entropy producing process [1]. In a recycling economy, entropy generation must be kept low and waste management should transform high-entropy wastes...

Bibliography

Primary Literature

  1. 1.
    Georgescu-Roegen N (1971) The entropy law and economic process. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  2. 2.
    Stumm W, Davis J (1974) Kann Recycling die Umweltbeeinträchtigung vermindern? In: Gottlieb Duttweiler-Institut für wirtschaftliche und soziale Studien, Recycling: Lösung der Umweltkrise? Ex Libris, Zurich, pp 29oe41Google Scholar
  3. 3.
    Rechberger H, Graedel TE (2002) The European copper cycle: statistical entropy analysis. Ecol Econ 42(1–2):59oe72Google Scholar
  4. 4.
    Brunner PH, Morf LS, Rechberger H (2004) Thermal waste treatment – a necessary element for sustainable waste management. In: Twardowska I, Allen HE, AAF K, Lacy WJ (eds) Solid waste: assessment, monitoring and remediation. Elsevie, Kidlington, p 783oe806Google Scholar
  5. 5.
    Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of wasteGoogle Scholar
  6. 6.
    Skutan S, Rechberger H (2007) Bestimmung von Stoffbilanzen und Transferkoeffizienten für die Linie II der MVA Wels. Final Report, Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, unpublishedGoogle Scholar
  7. 7.
    Rechberger H (1999) Entwicklung einer Methode zur Bewertung von Stoffbilanzen in der Abfallwirtschaft, PhD-Thesis, Wiener Mitteilungen Band 158, Institute for Water Quality, Resource and Waste Management, Vienna University of TechnologyGoogle Scholar
  8. 8.
    Rechberger H, Brunner PH (2002) A new, entropy based method to support waste and resource management decisions. Environ Sci Technol 34(4):809oe816Google Scholar
  9. 9.
    Mitterbauer G, Skutan S, Rechberger H. (2009) Charakterisierung der Rostasche der MVA Dürnrohr im Hinblick auf die Rückgewinnung von Metallen. Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, unpublishedGoogle Scholar
  10. 10.
    Zeltner C, Lichtensteiger T (2002) Thermal waste treatment and resource management – a petrologic approach to control the genesis of materials in smelting processes. Environ Eng Policy 3:75oe86Google Scholar
  11. 11.
    Sobańtka AP, Zessner M, Rechberger H (2012) The extension of statistical entropy analysis to chemical compounds. Entropy 14:2413–2426CrossRefGoogle Scholar

Books and Reviews

  1. Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, New YorkGoogle Scholar
  2. Kaufman S, Krishnan N, Known E, Castaldi M, Themelis N, Rechberger H (2008) Examination of the fate of carbon in waste management systems through statistical entropy and life cycle analysis. Environ Sci Technol 42(22):8558oe8563CrossRefGoogle Scholar
  3. Rechberger H (2001) An entropy based method to evaluate hazardous inorganic substance balances of waste treatment systems. Waste Manag Res 19:186oe192Google Scholar
  4. Rechberger H (2001) The use of the statistical entropy to evaluate the utilisation of incinerator ashes for the production of cement. Waste Manag Res 19:262oe–26268CrossRefGoogle Scholar
  5. Sobańtka A, Rechberger H (2013) Extended statistical entropy analysis (eSEA) for improving the evaluation of Austrian wastewater treatment plants. Water Sci Technol 67(5):1051–1057CrossRefGoogle Scholar
  6. Sobańtka AP, Pons M-N, Zessner M, Rechberger H (2013) Implementation of extended statistical entropy analysis to the effluent quality index of the benchmarking simulation model no. 2. Water 6:86–103CrossRefGoogle Scholar
  7. Sobańtka AP, Thaler S, Zessner M, Rechberger H (2013) Extended statistical entropy analysis for the evaluation of nitrogen budgets in Austria. Int J Environ Sci Technol 11(7):1947–1958CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Water Quality, Resource and Waste ManagementTechnische Universitaet WienViennaAustria

Personalised recommendations