WTE: Life Cycle Assessment Comparison to Landfilling

  • P. Ozge Kaplan
  • Joseph F. Decarolis
  • Morton A. Barlaz
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



Air pollution control system


Alaska Systems Coordinating Council


Clean Air Act


Electric generating unit


Florida Reliability Coordinating Council


Hawaiian Islands Coordinating Council


Internal combustion engine


Life cycle assessment


Life cycle inventory


Landfill gas


Landfill gas to energy


Midwest Reliability Organization


Municipal solid waste


North American Energy Reliability Council


Northeast Power Coordinating Council


Reliability First Corporation


SERC Reliability Corporation


Southwest Power Pool


Texas Regional Entity


United States Environmental Protection Agency


Western Electricity Coordinating Council



Definition of the Subject

This entry provides a detailed life cycle assessment (LCA) of combustion vs. landfilling of post-recycling municipal solid waste (MSW), that means the MSW with no value in the market or recovery potential. The LCA methodology is used...


  1. 1.
    Christensen TH, Bhander G, Lindvall H, Larsen AW, Fruergaard T, Damgaard A, Manfredi S, Boldrin A, Riber C, Hauschild M (2007) Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag Res 25(3):257–262CrossRefGoogle Scholar
  2. 2.
    Eriksson O, Reich MC, Frostell B, Bjorklund A, Assefa G, Sundqvist JO, Granath J, Baky A, Thyselius L (2005) Municipal solid waste management from a systems perspective. J Clean Prod 13(3):241–252CrossRefGoogle Scholar
  3. 3.
    Gentil EC, Damgaard A, Hauschild M, Finnveden G, Eriksson O, Thorneloe S, Kaplan PO, Barlaz M, Muller O, Matsui Y, Ii R, Christensen TH (2010) Models for waste life cycle assessment: review of technical assumptions. Waste Manag 30(12):2636–2648CrossRefGoogle Scholar
  4. 4.
    Harrison KW, Dumas RD, Solano E, Barlaz MA, Brill ED, Ranjithan SR (2001) Decision support tool for life-cycle-based solid waste management. J Comput Civ Eng 15(1):44–58CrossRefGoogle Scholar
  5. 5.
    Kaplan PO, Ranjithan SR, Barlaz MA (2009) Use of life-cycle analysis to support solid waste management planning for Delaware. Environ Sci Technol 43(5):1264–1270CrossRefGoogle Scholar
  6. 6.
    Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS, Hauschild M (2006) Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Manag Res 24(1):3–15CrossRefGoogle Scholar
  7. 7.
    Thorneloe SA, Weitz K, Jambeck J (2007) Application of the US decision support tool for materials and waste management. Waste Manag 27(8):1006–1020CrossRefGoogle Scholar
  8. 8.
    Wanichpongpan W, Gheewala SH (2007) Life cycle assessment as a decision support tool for landfill gas-to energy projects. J Clean Prod 15(18):1819–1826CrossRefGoogle Scholar
  9. 9.
    White PR, Franke M, Hindle P (1995) Integrated solid waste management: a lifecycle inventory. Chapman & Hall, New YorkGoogle Scholar
  10. 10.
    U.S. Environmental Protection Agency (2010) Municipal solid waste in the United States: 2009 Facts and Figures. EPA/530/R10/012. Washington, DCGoogle Scholar
  11. 11.
    European Commission (2005) Waste generated and treated in Europe: Data 1995–2003. Luxembourg.
  12. 12.
    Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources: large municipal waste combustors; final rule (2006). Fed Regist 71(90)Google Scholar
  13. 13.
    Energy Recovery Council (2010) The 2010 ERC directory of waste-to-energy plants Accessed 12 July 2011
  14. 14.
    RTI International. Municipal solid waste decision support tool. Accessed 12 July 2011
  15. 15.
    Harrison KW, Dumas RD, Barlaz MA, Nishtala SR (2000) A life-cycle inventory model of municipal solid waste combustion. J Air Waste Manage Assoc 50(6):993–1003CrossRefGoogle Scholar
  16. 16.
    IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change: the physical science basis. Accessed 18 July 2011Google Scholar
  17. 17.
    Camobreco V, Ham R, Barlaz M, Repa E, Felker M, Rousseau C, Rathle J (1999) Life cycle inventory of a modern municipal solid waste landfill. Waste Manag Res 17(6):394–408CrossRefGoogle Scholar
  18. 18.
    Environment Agency (2000) Life cycle inventory development for waste management operations: incineration. R&D Project Record P1/392/6, BristolGoogle Scholar
  19. 19.
    U.S. Environmental Protection Agency (2006) Municipal solid waste in the United States: 2005 facts and figures. EPA/530/R06/011. Washington, DCGoogle Scholar
  20. 20.
    Tchobanoglous G, Vigil SA, Theisen H (1993) Integrated solid waste management, International edn. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Oshins C, Block D (2000) Feedstock composition at composting sites. Biocycle 41:31–34Google Scholar
  22. 22.
    Realff MJ, Lemieux P, Lucero S, Mulholland J, Smith PB (2005) Characterization of transient puff emissions from the burning of carpet waste charges in a rotary kiln combustor. In: Cement industry technical conference, 15–20 May 2005. pp 212–228Google Scholar
  23. 23.
    Nelson B (2002) Performance/test data for large Municipal Waste Combustors (MWCs) at MACT compliance (year 2000 data). Memo for Walt Stevenson of U.S. EPA, DurhamGoogle Scholar
  24. 24.
    U.S. Environmental Protection Agency (2010) The Emissions & Generation Resource Integrated Database (eGRID) 2010. Accessed 13 July 2011
  25. 25.
    NREL (2011) Bituminous coal, at mine, data years 1999–2002. U.S. LCI database. Accessed 24 June 2011
  26. 26.
    NREL (2011) Natural gas, at extraction site, data years 1997–2001. U.S. LCI database. Accessed 24 June 2011)
  27. 27.
    NREL (2011) Fuel grade uranium, at regional storage, data years 1981–2002. U.S. LCI database. Accessed 24 June 2011
  28. 28.
    NREL (2011) Crude oil, at production site, data years 1997–2001. U.S. LCI database. Accessed 24 June 2011
  29. 29.
    Sich BA, Barlaz MA (2000) Calculation of the cost and life cycle inventory for waste disposal in traditional, bioreactor and ash landfills. Accessed 15 July 2011
  30. 30.
    Eleazer WE, Odle WS, Wang YS, Barlaz MA (1997) Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 31(3):911–917CrossRefGoogle Scholar
  31. 31.
    U.S. Environmental Protection Agency Background information document for updating AP42 section 2.4 municipal solid waste landfills. EPA/600/R-08-116 Washington, DC.
  32. 32.
    Kaplan PO, DeCarolis J, Thorneloe S (2009) Is it better to burn or bury waste for clean electricity generation? Environ Sci Technol 43(6):1711–1717CrossRefGoogle Scholar
  33. 33.
    Staley BF, Barlaz MA (2009) Composition of municipal solid waste in the U.S. and implications for carbon sequestration and methane yield. J Environ Eng 135(10):901–909CrossRefGoogle Scholar
  34. 34.
    U.S. Department of Energy (2006) Electric power annual 2005. DOE/EIA-0348(2005). Washington, DCGoogle Scholar
  35. 35.
    Van Haaren R, Themelis N, Goldstein N (2010) The state of garbage in America (2010 national survey). BioCycle, pp. 16–23Google Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Ozge Kaplan
    • 1
  • Joseph F. Decarolis
    • 2
  • Morton A. Barlaz
    • 2
  1. 1.National Risk Management Research Laboratory, Office of Research and DevelopmentU.S. Environmental Protection AgencyDurhamUSA
  2. 2.Civil, Construction and Environmental EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations