Solid Waste Generation and Characterization

  • Anders Lagerkvist
  • Lisa Dahlén
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Agricultural waste

Plant and animal residues from agricultural production. Straw, fruit-stones, peels, manure are examples of agricultural waste.

Construction and demolition waste

Waste generated from the construction, reconstruction or deconstruction of buildings, roads and other infrastructure.

Disaster waste

Waste generated from and arising due to a disaster like a natural disaster as earthquakes, floods, tsunamis, hurricanes/typhoons/cyclones, wildfires, winter storms, and volcanoes or larger accidents caused by humans.

Industrial waste

Solid wastes that are generated during the manufacture of products. Material spills, dusts, sludges, defect products, etc., belong to this group of wastes.

Municipal solid waste

Household waste and other waste under municipal responsibility, e.g., street sweepings and waste from public institutions.

Waste characterization

To learn about the intrinsic properties of waste materials and how the materials will influence and be influenced by...


  1. 1.
    Ardani KB, Reith CC, Donlan CJ (2009) Harnessing catastrophe to promote resource recovery and eco-industrial development. J Ind Ecol 13(4):579–591CrossRefGoogle Scholar
  2. 2.
    Arvelakisa S, Gehrmannb H, Beckmannc M, Koukiosa EG (2005) Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments. Biomass Bioenergy 8:331–338CrossRefGoogle Scholar
  3. 3.
    ASTM (2010) American Society of Testing and Materials. The American Society of Testing and Materials
  4. 4.
    Basel Convention (1992) Basel convention on the control of transboundary movements of hazardous wastes and their disposal BASEL.
  5. 5.
    Beigl P, Lebersorger S, Salhofer S (2008) Modelling municipal solid waste generation: a review. Waste Manag 28(1):200–214CrossRefGoogle Scholar
  6. 6.
    Brown C, Milke M, Seville E (2011) Disaster waste management: a review article. Waste Manag 31:1085–1098CrossRefGoogle Scholar
  7. 7.
    Christensen TH (ed) (2010) Solid waste technology management, 1st edn. Wiley, Hoboken, p 1072Google Scholar
  8. 8.
    Dahlén L, Lagerkvist A (2008) Methods for household waste composition studies. Review. Waste Manag 28(7):1100–1112CrossRefGoogle Scholar
  9. 9.
    DIN (1984) Deutsches Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung der Eluierbarkeit mit Wasser (S4). DIN 38 414 Teil 4Google Scholar
  10. 10.
    DIN (2010) DIN Deutsches Institut für Normung e.V. DIN Deutsches Institut für Normung e.V.
  11. 11.
    European Commission (2000) European list of waste. Commission Decision 2000/532/EC. Off J Eur Communities L226:3–24Google Scholar
  12. 12.
    European Commission (2006) Directive 2006/12/EC. Off J Eur Communities L 114:9Google Scholar
  13. 13.
    European Commission (2008) Directive 2008/98/EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives. Off J Eur Communities L312:3–30Google Scholar
  14. 14.
    European Commission (2010) The Eurostat database waste statistics/generation of waste.
  15. 15.
  16. 16.
    FAO (2010) The Food and Agriculture Organization of the United Nations.
  17. 17.
    ISO (2010) The International Organization for Standardization. The International Organization for Standardization
  18. 18.
    Jian-Zhuang X, He X, Chang-Qing W, Li G (2009) Statistical analysis on building waste in Wenchuan Earthquake-hit area. J Sichuan Univ 41(3):188–194. Engineering Science EditionGoogle Scholar
  19. 19.
    Kagawa S, Inamura H, Moriguchi Y (2004) A simple multiregional input–output account for waste analysis. Econ Syst Res 16(1):1–20. Retrieved from Business Source Elite databaseCrossRefGoogle Scholar
  20. 20.
    Karunasena G, Amaratunga D, Haigh R, Lill I (2009) Post disaster waste management strategies in developing countries: case of Sri Lanka. Int J Strat Property Manag 13:171–190CrossRefGoogle Scholar
  21. 21.
    Lipsmeier K (2004) Abfallkennzahlen fuer Neubauleistungen im Hochbau, Hochbaukonstruktionen und Neubauvorhaben in Hochbau nach abfallwirtschaftlichen Gesichtspunkten. Dissertation, Technische Universität DresdenGoogle Scholar
  22. 22.
  23. 23.
    Petrova E (2006) Vulnerability of Russian regions to natural risk: experience of quantitative assessment. Nat Hazards Earth Syst Sci 6:49–54CrossRefGoogle Scholar
  24. 24.
    Rugg FM (1997) Solid waste/characterization methods. In: Liu DHF, Lipták BG (eds) Environmental engineers’ handbook. Lewis, Boca Raton, pp 1158–1174. ISBN 0-8493-9971-8Google Scholar
  25. 25.
    SIS (2010) Swedish Institute for Standards. Swedish Institute for Standards
  26. 26.
    UNISDR (2009) Global assessment report on disaster risk reduction, United Nations international strategy for disaster reduction secretariat. p 207. ISBN/ISSN 9789211320282.
  27. 27.
    USDA (2010) Table 01 world crop production summary. United States Department of Agriculture
  28. 28.
    USEPA (1992) EPA test method 1311 – TCLP, toxicity characteristic leaching procedure, p 38.
  29. 29.

Copyright information

© Springer Science+Business Media LLC 2012

Authors and Affiliations

  • Anders Lagerkvist
    • 1
  • Lisa Dahlén
    • 1
  1. 1.Civil, Mining and Environmental Engineering, Waste Science and TechnologyLuleå University of TechnologyLuleåSweden

Personalised recommendations