Pancreatic Cancer pp 1361-1377 | Cite as

Cancer Exosomes for Early Pancreatic Cancer Diagnosis and Role in Metastasis

  • Murray KorcEmail author
  • Samantha Deitz McElyea
Reference work entry


Pancreatic ductal adenocarcinoma (PDAC) is a treatment-recalcitrant and highly metastatic cancer. Recent studies have demonstrated that PDAC is associated with an increased release of small vesicles called exosomes that are ~40 to 130 nanometers in diameter. These exosomes may derive from pancreatic cancer cells, cancer-associated fibroblasts, and infiltrating immune and inflammatory cells. They carry a cargo rich in proteins, lipids, DNA, and microRNAs. Exosomes can modulate the tumor microenvironment, promote pancreatic cancer cell proliferation, invasion, and metastasis, and prime the pre-metastatic niche to facilitate formation of distant metastatic lesions. Components of the exosomal cargo may also serve as diagnostic biomarkers and guide the design of precision medicine strategies. Finally, exosomes have been proposed to act as biological nanoparticles that can be loaded with drugs for therapeutic use.


Early diagnosis MicroRNAs Exosomes Metastasis 


  1. 1.
    Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.CrossRefGoogle Scholar
  2. 2.
    Razi M, Futter CE. Distinct Roles for Tsg101 and Hrs in Multivesicular Body Formation and Inward Vesiculation. Mol Biol Cell. 2006;17:3469–83.CrossRefGoogle Scholar
  3. 3.
    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.CrossRefGoogle Scholar
  4. 4.
    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.CrossRefGoogle Scholar
  5. 5.
    Crescitelli R, Lässer C, Szabó T, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: aapoptotic bodies, micro-vesicles and exosomes. J Extracell Vesicles. 2013;2:20677. Scholar
  6. 6.
    Marsh M, McMahon HT. The structural era of endocytosis. Science. 1999;285:215–20.CrossRefGoogle Scholar
  7. 7.
    Mellman I. Endocytosis and molecular sorting. Annu Rev Cell Dev Biol. 1996;12:575–625.CrossRefGoogle Scholar
  8. 8.
    McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33.CrossRefGoogle Scholar
  9. 9.
    Verweij FJ, Middeldorp JM, Pegtel DM. Intracellular signaling controlled by the endosomal-exosomal pathway. Commun Integr Biol. 2012;5:88–93.CrossRefGoogle Scholar
  10. 10.
    Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol. 2004;16:400–6.CrossRefGoogle Scholar
  11. 11.
    Sorkin A, Goh LK. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 2009;315:683–96.CrossRefGoogle Scholar
  12. 12.
    White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006;25:1–12.CrossRefGoogle Scholar
  13. 13.
    Witwer KW, Buzás E, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360. Scholar
  14. 14.
    Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. 2015;1295:179–209.CrossRefGoogle Scholar
  15. 15.
    Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation Techniques. Theranostics. 2017;7:789–804.CrossRefGoogle Scholar
  16. 16.
    Nakai W, Yoshida T, Diez D, Miyatake Y, Nishibu T, Imawaka N, Naruse K, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6:33935. Scholar
  17. 17.
    Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;19:3365–74.Google Scholar
  18. 18.
    van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140:13–21.CrossRefGoogle Scholar
  19. 19.
    Schey KL, Luther JM, Rose KL. Proteomics charactherization of exosome cargo. Methods. 2015;87:75–82.CrossRefGoogle Scholar
  20. 20.
    López-Cobo S, Campos-Silva C, Valés-Gómez M. Glycosyl-Phosphatidyl-Inositol (GPI)-Anchors and Metalloproteases: Their Roles in the Regulation of Exosome Composition and NKG2D-Mediated Immune Recognition. Front Cell Dev Biol. 2016;4:97. Scholar
  21. 21.
    Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD, Sanderson RD. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J Biol Chem. 1998;273:22825–32.CrossRefGoogle Scholar
  22. 22.
    Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW, Lander AD, et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest. 1998;102:1662–73.CrossRefGoogle Scholar
  23. 23.
    Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest. 2008;118:89–99.CrossRefGoogle Scholar
  24. 24.
    Whipple CA, Young AL, Korc M. A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene. 2012;31:2535–44.CrossRefGoogle Scholar
  25. 25.
    Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol. 2005;6:530–41.CrossRefGoogle Scholar
  26. 26.
    Rodgers KD, San Antonio JD, Jacenko O. Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators. Dev Dyn. 2008;237:2622–42.CrossRefGoogle Scholar
  27. 27.
    Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. 2013;110:17380–5.CrossRefGoogle Scholar
  28. 28.
    Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93.CrossRefGoogle Scholar
  29. 29.
    Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22. Scholar
  30. 30.
    van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12:1182–92.CrossRefGoogle Scholar
  31. 31.
    Momen-Heravi F, Balaj L, Alian S, Tigges J, Toxavidis V, Ericsson M, et al. Alternative methods for characterization of extracellular vesicles. Front Physiol. 2012;3:354. eCollection 2012CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2:19671. eCollection 2013.CrossRefGoogle Scholar
  33. 33.
    Coumans FA, van der Pol E, Böing AN, Hajji N, Sturk G, van Leeuwen TG, et al. Reproducing extracellular vesicle size and concentration determination with tunable resistive pulse sensing. J Extracell Vesicles. 2014;3:25922. Scholar
  34. 34.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97.CrossRefGoogle Scholar
  35. 35.
    Hildonen S, Skarpen E, Halvorsen TG, Reubsaet L. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci Rep. 2016;6:36331. Scholar
  36. 36.
    Bala S, Csak T, Momen-Heravi F, Lippai D, Kodys K, Catalano D, et al. Biodistribution and function of extracellular miRNA-155 in mice. Sci Rep. 2015;5:10721. Scholar
  37. 37.
    Morishita M, Takahashi Y, Nishikawa M, Sano K, Kato K, Yamashita T, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci. 2015;104:705–13.CrossRefGoogle Scholar
  38. 38.
    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–75.CrossRefGoogle Scholar
  39. 39.
    Madhavan B, Yue S, Galli U, Rana S, Gross W, Müller M, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136:2616–27.CrossRefGoogle Scholar
  40. 40.
    Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther. 2017;18:158–65.CrossRefGoogle Scholar
  41. 41.
    Babic A, Wolpin BM. Circulating Exosomes in Pancreatic Cancer: Will They Succeed on the Long, Littered Road to Early Detection Marker? Clin Chem. 2016;62:307–9.CrossRefGoogle Scholar
  42. 42.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523:177–82.CrossRefGoogle Scholar
  43. 43.
    Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, et al. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction. Clin Cancer Res. 2015;21:1722–33.CrossRefGoogle Scholar
  44. 44.
    Liang K, Liu F, Fan J, Sun D, Liu C, Lyon CJ, et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nature Biomed Engineering. 2017;
  45. 45.
    Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA. 2012;109:E2110–6.CrossRefGoogle Scholar
  46. 46.
    Fonseca P, Vardaki I, Occhionero A, Panaretakis T. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles. Int Rev Cell Mol Biol. 2016;326:175–99.CrossRefGoogle Scholar
  47. 47.
    Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016;5:e10250. Scholar
  48. 48.
    Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics. 2013;12:343–55.CrossRefGoogle Scholar
  49. 49.
    Higginbotham JN, Zhang Q, Jeppesen DK, Scott AM, Manning HC, Ochieng J, et al. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell Vesicles. 2016;5:29254. eCollection 2016CrossRefPubMedGoogle Scholar
  50. 50.
    Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, et al. Amphiregulin exosomes increase cancer cell invasion. Curr Biol. 2011;21:779–86.CrossRefGoogle Scholar
  51. 51.
    Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology. 2013;145:1121–32.CrossRefGoogle Scholar
  52. 52.
    Roma-Rodrigues C, Fernandes AR, Baptista PV. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int. 2014;2014:1. Scholar
  53. 53.
    Mu W, Rana S, Zöller M. Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia. 2013;15:875–IN4.CrossRefGoogle Scholar
  54. 54.
    Andersen DK, Korc M, Petersen GM, Eibl G, Li D, Rickels MR, Chari ST, Abbruzzese JL. Diabetes Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes. 2017;66:1103–10.CrossRefGoogle Scholar
  55. 55.
    Korc M. Pancreatic cancer-associated diabetes is an “exosomopathy”. Clin Cancer Res. 2015;21:1508–10.CrossRefGoogle Scholar
  56. 56.
    Talbert EE, Guttridge DC. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Semin Cell Dev Biol. 2016;54:82–91.CrossRefGoogle Scholar
  57. 57.
    He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 2014;111:4525–9.CrossRefGoogle Scholar
  58. 58.
    He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. 2013;123:4821–35.CrossRefGoogle Scholar
  59. 59.
    Khorana AA, Francis CW, Menzies KE, Wang JG, Hyrien O, Hathcock J, Mackman N, Taubman MB. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. Journal of Thrombosis and Haemostasis. 2008;6:1983–5.CrossRefGoogle Scholar
  60. 60.
    Wang JG, Geddings JE, Aleman MM, Cardenas JC, Chantrathammachart P, Williams JC, Kirchhofer D, Bogdanov VY, Bach RR, Rak J, Church FC, Wolberg AS, Pawlinski R, et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood. 2012;119:5543–52.CrossRefGoogle Scholar
  61. 61.
    Yates KR, Welsh J, Echrish HH, Greenman J, Maraveyas A, Madden LA. Pancreatic cancer cell and microparticle procoagulant surface characterization: involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine. Blood coagulation & brinolysis. 2011;22:680–7.CrossRefGoogle Scholar
  62. 62.
    Muhsin-Sharafaldine MR, Kennedy BR, Saunderson SC, Buchanan CR, Dunn AC, Faed JM, et al. Mechanistic insight into the procoagulant activity of tumor-derived apoptotic vesicles. Biochim Biophys Acta. 1861;2017:286–95.Google Scholar
  63. 63.
    Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008;100:878–85.CrossRefGoogle Scholar
  64. 64.
    Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. Journal of Thrombosis and Haemostasis. 2007;5:632–4.CrossRefGoogle Scholar
  65. 65.
    Chiang AC, Massague J. Molecular basis of metastasis. The New England Journal of Medicine. 2008;359:2814–23.CrossRefGoogle Scholar
  66. 66.
    Sethi N, Kang Y. Unravelling the complexity of metastasis - molecular understanding and targeted therapies. Nature reviews Cancer. 2011;11:735–48.CrossRefGoogle Scholar
  67. 67.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nature Reviews Cancer. 2009;9:239–52.CrossRefGoogle Scholar
  68. 68.
    Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer. 2006;6:259–69.CrossRefGoogle Scholar
  69. 69.
    Iorio MV, Croce CM. MicroRNAs in cancer: Small molecules with a huge impact. Journal of Clinical Oncology. 2009;27:5848–56.CrossRefGoogle Scholar
  70. 70.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.CrossRefGoogle Scholar
  71. 71.
    Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology. 2010;28:341–7.CrossRefGoogle Scholar
  72. 72.
    Miao F, Zhu J, Chen Y, Tang N, Wang X, Li X. MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol Lett. 2016;11:134–40.CrossRefGoogle Scholar
  73. 73.
    Zhao S, Sun H, Jiang W, Mi Y, Zhang D, Wen Y, et al. miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGFβ-mediated epithelial to mesenchymal transition. Mol Cancer. 2017;16(1):12. Scholar
  74. 74.
    Rana S, Malinowska K, Zöller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013;15:281–IN31.CrossRefGoogle Scholar
  75. 75.
    Basso D, Gnatta E, Plebani M. Pancreatic cancer fostered immunosuppression privileges tumor growth and progression. J Clin Cell Immunol. 2014;5:6–22.CrossRefGoogle Scholar
  76. 76.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology. 2015;17:816–26.CrossRefGoogle Scholar
  77. 77.
    Zhang Y, Wang XF. A niche role for cancer exosomes in metastasis. Nature Cell Biology. 2015;17:709–11.CrossRefGoogle Scholar
  78. 78.
    Friess H, Yamanaka Y, Büchler M, Ebert M, Beger HG, Gold LI, Korc M. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology. 1993;105:1846–56.CrossRefGoogle Scholar
  79. 79.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.CrossRefGoogle Scholar
  80. 80.
    Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically Injected Exosomes Targeted to EGFR Deliver Antitumor MicroRNA to Breast Cancer Cells. Mol Ther. 2013;21:185–91.CrossRefGoogle Scholar
  81. 81.
    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 1846;2014:75–87.Google Scholar
  82. 82.
    Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 2016;5:31053. Scholar
  83. 83.
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498–503.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Medicine, Biochemistry and Molecular BiologyIndiana University School of Medicine, the Melvin and Bren Simon Cancer Center and the Pancreatic Cancer Signature CenterIndianapolisUSA
  2. 2.Department of MedicineIndiana University Melvin and Bren Simon Cancer CenterIndianapolisUSA

Personalised recommendations