The Molecular Pathology of Precursor Lesions of Pancreatic Cancer

Reference work entry

Abstract

It has become evident over the past decade that pancreatic ductal adenocarcinoma (PDAC) does not originate de novo, but rather, through a multistep progression that involves histologically defined precursor lesions. Three major subtypes of precursor lesions of PDAC have been identified to date, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN). PanINs constitute by far the most common precursor lesion, and are, by definition, microscopic in nature, while IPMNs and MCNs occur less frequently and are macroscopic (e.g., radiographically detectable) precursor lesions. In addition to the development of consensus histopathological criteria for the identification and classification of PDAC precursors, there has also been considerable progress made in characterizing the genetic alterations underlying these lesions. Elucidating the molecular pathology of precursor lesions has enabled a better understanding of the pathogenesis of early pancreatic neoplasia, and provided a seedbed for developing tools for early detection and chemoprevention of PDAC. The histopathology, molecular genetics as well as clinical implications and possible directions for future research of PanINs, IPMNs, and MCNs will be discussed in this chapter.

Keywords

Pancreatic ductal adenocarcinoma Precursor neoplasms Molecular genetics Early detection Pathogenesis 

References

  1. 1.
    Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Hulst SLP. Zur Kenntnis der Genese des Adenokarzinoms und Karzinoms des Pankreas. Virchows Archiv. 1905;180:288–316.CrossRefGoogle Scholar
  3. 3.
    Hruban RH, Takaori K, Klimstra DS, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28:977–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Hruban RH, Maitra A, Kern SE, et al. Precursors to pancreatic cancer. Gastroenterol Clin North Am. 2007;36:831–49.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cubilla AL, Fitzgerald PJ. Morphological lesions associated with human primary invasive nonendocrine pancreas cancer. Cancer Res. 1976;36:2690–8.PubMedGoogle Scholar
  6. 6.
    Andea A, Sarkar F, Adsay VN. Clinicopathological correlates of pancreatic intraepithelial neoplasia: a comparative analysis of 82 cases with and 152 cases without pancreatic ductal adenocarcinoma. Mod Pathol. 2003;16:996–1006.PubMedCrossRefGoogle Scholar
  7. 7.
    Agoff SN, Crispin DA, Bronner MP, et al. Neoplasms of the ampulla of vater with concurrent pancreatic intraductal neoplasia: a histological and molecular study. Mod Pathol. 2001;14:139–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Stelow EB, Adams RB, Moskaluk CA. The prevalence of pancreatic intraepithelial neoplasia in pancreata with uncommon types of primary neoplasms. Am J Surg Pathol. 2006;30:36–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Maitra A, Adsay NV, Argani P, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16:902–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53:549–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993;143:545–54.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kanda M, Matthaei H, Wu J, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–733.e9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 2003;17:3112–26.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hingorani SR, Tuveson DA. Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev. 2003;13:6–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Baines AT, Lim KH, Shields JM, et al. Use of retrovirus expression of interfering RNA to determine the contribution of activated K-Ras and ras effector expression to human tumor cell growth. Methods Enzymol. 2006;407:556–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2:243–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Laghi L, Orbetegli O, Bianchi P, et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene. 2002;21:4301–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Sherr CJ. Cell cycle control and cancer. Harvey Lect. 2000;96:73–92.PubMedGoogle Scholar
  20. 20.
    Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8:27–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57:3126–30.PubMedGoogle Scholar
  22. 22.
    Wilentz RE, Geradts J, Maynard R, et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res. 1998;58:4740–4.PubMedGoogle Scholar
  23. 23.
    Rosty C, Geradts J, Sato N, et al. p16 Inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol. 2003;27:1495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hustinx SR, Hruban RH, Leoni LM, et al. Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: a potential new target for therapy. Cancer Biol Ther. 2005;4:83–6.PubMedGoogle Scholar
  25. 25.
    Hustinx SR, Leoni LM, Yeo CJ, et al. Concordant loss of MTAP and p16/CDKN2A expression in pancreatic intraepithelial neoplasia: evidence of homozygous deletion in a noninvasive precursor lesion. Mod Pathol. 2005;18:959–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res. 1994;54:3025–33.PubMedGoogle Scholar
  28. 28.
    Hahn SA, Hoque AT, Moskaluk CA, et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 1996;56:490–4.PubMedGoogle Scholar
  29. 29.
    Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782:197–228.PubMedCrossRefGoogle Scholar
  30. 30.
    Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006;441:1015–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilentz RE, Su GH, Dai JL, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000;156:37–43.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wilentz RE, Iacobuzio-Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60:2002–6.PubMedGoogle Scholar
  34. 34.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRefPubMedGoogle Scholar
  35. 35.
    van der Heijden MS, Yeo CJ, Hruban RH, et al. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res. 2003;63:2585–8.PubMedGoogle Scholar
  36. 36.
    van der Heijden MS, Brody JR, Gallmeier E, et al. Functional defects in the Fanconi anemia pathway in pancreatic cancer cells. Am J Pathol. 2004;165:651–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    D’Andrea AD, Grompe M. The Fanconi anemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Couch FJ, Johnson MR, Rabe KG, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:342–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Klein AP, Hruban RH, Brune KA, et al. Familial pancreatic cancer. Cancer J. 2001;7:266–73.PubMedGoogle Scholar
  40. 40.
    Goggins M, Hruban RH, Kern SE. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol. 2000;156:1767–71.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    van Heek NT, Meeker AK, Kern SE, et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol. 2002;161:1541–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yamano M, Fujii H, Takagaki T, et al. Genetic progression and divergence in pancreatic carcinoma. Am J Pathol. 2000;156:2123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Sato N, Fukushima N, Hruban RH, et al. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol. 2008;21:238–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Peng DF, Kanai Y, Sawada M, et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis. 2006;27:1160–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Goggins M. Identifying molecular markers for the early detection of pancreatic neoplasia. Semin Oncol. 2007;34:303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Iacobuzio-Donahue CA, Ashfaq R, Maitra A, et al. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 2003;63:8614–22.PubMedGoogle Scholar
  48. 48.
    Han H, Bearss DJ, Browne LW, et al. Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res. 2002;62:2890–6.PubMedGoogle Scholar
  49. 49.
    Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003;63:2649–57.PubMedGoogle Scholar
  50. 50.
    Buchholz M, Braun M, Heidenblut A, et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene. 2005;24:6626–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Nakamura T, Furukawa Y, Nakagawa H, et al. Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene. 2004;23:2385–400.PubMedCrossRefGoogle Scholar
  52. 52.
    Tanaka M, Komatsu N, Terakawa N, et al. Increased levels of IgG antibodies against peptides of the prostate stem cell antigen in the plasma of pancreatic cancer patients. Oncol Rep. 2007;18:161–6.PubMedGoogle Scholar
  53. 53.
    Argani P, Iacobuzio-Donahue C, Ryu B, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001;7:3862–8.PubMedGoogle Scholar
  54. 54.
    Li M, Bharadwaj U, Zhang R, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther. 2008;7:286–96.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Segara D, Biankin AV, Kench JG, et al. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin Cancer Res. 2005;11:3587–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Kent OA, Mullendore M, Wentzel EA, et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther. 2009;8:2013–24.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120:1046–54.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 2009;33:698–709.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yu J, Li A, Hong SM, et al. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin Cancer Res. 2012;18:981–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Klein WM, Hruban RH, Klein-Szanto AJ, et al. Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod Pathol. 2002;15:441–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Biankin AV, Kench JG, Morey AL, et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res. 2001;61:8830–7.PubMedGoogle Scholar
  62. 62.
    Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999;59:987–90.PubMedGoogle Scholar
  63. 63.
    Maitra A, Ashfaq R, Gunn CR, et al. Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol. 2002;118:194–201.PubMedCrossRefGoogle Scholar
  64. 64.
    Sclabas GM, Uwagawa T, Schmidt C, et al. Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer. 2005;103:2485–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Bloomston M, Zervos EE, Rosemurgy AS 2nd. Matrix metalloproteinases and their role in pancreatic cancer: a review of preclinical studies and clinical trials. Ann Surg Oncol. 2002;9:668–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Crawford HC, Scoggins CR, Washington MK, et al. Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest. 2002;109:1437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    O’Mahony CA, Seidel A, Albo D, et al. Angiostatin generation by human pancreatic cancer. J Surg Res. 1998;77:55–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Ribatti D, Leali D, Vacca A, et al. In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor-2. J Cell Sci. 1999;112(Pt 23):4213–21.PubMedGoogle Scholar
  69. 69.
    Harvey SR, Hurd TC, Markus G, et al. Evaluation of urinary plasminogen activator, its receptor, matrix metalloproteinase-9, and von Willebrand factor in pancreatic cancer. Clin Cancer Res. 2003;9:4935–43.PubMedGoogle Scholar
  70. 70.
    Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Doucas H, Garcea G, Neal CP, et al. Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance. Eur J Cancer. 2005;41:365–79.PubMedCrossRefGoogle Scholar
  72. 72.
    Miyamoto Y, Maitra A, Ghosh B, et al. Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3:565–76.CrossRefPubMedGoogle Scholar
  73. 73.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res. 2007;67:2187–96.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425:851–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Prasad NB, Biankin AV, Fukushima N, et al. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of Hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res. 2005;65:1619–26.PubMedCrossRefGoogle Scholar
  77. 77.
    Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasca di Magliano M, Biankin AV, Heiser PW, et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One. 2007;2:e1155.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Al-Aynati MM, Radulovich N, Riddell RH, et al. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res. 2004;10:1235–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 2006;66:95–106.PubMedCrossRefGoogle Scholar
  81. 81.
    Feldmann G, Habbe N, Dhara S, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut. 2008;57:1420.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Faca VM, Song KS, Wang H, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med. 2008;5:e123.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Funahashi H, Satake M, Dawson D, et al. Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res. 2007;67:7068–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Canto MI, Goggins M, Hruban RH, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol. 2006;4:766–81; quiz 665.CrossRefGoogle Scholar
  85. 85.
    Brune K, Abe T, Canto M, et al. Multifocal neoplastic precursor lesions associated with lobular atrophy of the pancreas in patients having a strong family history of pancreatic cancer. Am J Surg Pathol. 2006;30:1067–76.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Terhune PG, Phifer DM, Tosteson TD, et al. K-ras mutation in focal proliferative lesions of human pancreas. Cancer Epidemiol Biomarkers Prev. 1998;7:515–21.PubMedGoogle Scholar
  87. 87.
    Yu J, Sadakari Y, Shindo K, et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut. 2017;66:1677–87.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Reid-Lombardo KM, St Sauver J, Li Z, et al. Incidence, prevalence, and management of intraductal papillary mucinous neoplasm in Olmsted County, Minnesota, 1984–2005: a population study. Pancreas. 2008;37:139–44.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tanaka M, Fernandez-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.CrossRefPubMedGoogle Scholar
  90. 90.
    Scheiman JM, Hwang JH, Moayyedi P. American Gastroenterological Association technical review on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:824–48.e22.PubMedCrossRefGoogle Scholar
  91. 91.
    Adsay V, Mino-Kenudson M, Furukawa T, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona Consensus Meeting. Ann Surg. 2016;263:162–77.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Crippa S, Fernandez-Del Castillo C, Salvia R, et al. Mucin-producing neoplasms of the pancreas: an analysis of distinguishing clinical and epidemiologic characteristics. Clin Gastroenterol Hepatol. 2010;8:213–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Salvia R, Fernandez-del Castillo C, Bassi C, et al. Main-duct intraductal papillary mucinous neoplasms of the pancreas: clinical predictors of malignancy and long-term survival following resection. Ann Surg. 2004;239:678–85; discussion 685–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Maitra A, Fukushima N, Takaori K, et al. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.PubMedCrossRefGoogle Scholar
  95. 95.
    Terris B, Ponsot P, Paye F, et al. Intraductal papillary mucinous tumors of the pancreas confined to secondary ducts show less aggressive pathologic features as compared with those involving the main pancreatic duct. Am J Surg Pathol. 2000;24:1372–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Seki M, Yanagisawa A, Ohta H, et al. Surgical treatment of intraductal papillary-mucinous tumor (IPMT) of the pancreas: operative indications based on surgico-pathologic study focusing on invasive carcinoma derived from IPMT. J Hepatobiliary Pancreat Surg. 2003;10:147–55.PubMedCrossRefGoogle Scholar
  97. 97.
    Tanaka M. Intraductal papillary mucinous neoplasm of the pancreas: diagnosis and treatment. Pancreas. 2004;28:282–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Seidel G, Zahurak M, Iacobuzio-Donahue C, et al. Almost all infiltrating colloid carcinomas of the pancreas and periampullary region arise from in situ papillary neoplasms: a study of 39 cases. Am J Surg Pathol. 2002;26:56–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.PubMedCrossRefGoogle Scholar
  100. 100.
    Kamisawa T, Tu Y, Egawa N, et al. Malignancies associated with intraductal papillary mucinous neoplasm of the pancreas. World J Gastroenterol. 2005;11:5688–90.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nikiforova MN, Khalid A, Fasanella KE, et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod Pathol. 2013;26:1478–87.PubMedCrossRefGoogle Scholar
  102. 102.
    Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3:92ra66.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Singhi AD, Nikiforova MN, Fasanella KE, et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res. 2014;20:4381–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Springer S, Wang Y, Dal Molin M, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149:1501–10.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wu J, Jiao Y, Dal Molin M, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108:21188–93.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Amato E, Molin MD, Mafficini A, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233:217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kanda M, Sadakari Y, Borges M, et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol. 2013;11:719–30.e5.PubMedCrossRefGoogle Scholar
  108. 108.
    Garcia-Carracedo D, Chen ZM, Qiu W, et al. PIK3CA mutations in mucinous cystic neoplasms of the pancreas. Pancreas. 2014;43:245–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Garcia-Carracedo D, Turk AT, Fine SA, et al. Loss of PTEN expression is associated with poor prognosis in patients with intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2013;19:6830–41.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sasaki S, Yamamoto H, Kaneto H, et al. Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep. 2003;10:21–5.PubMedGoogle Scholar
  111. 111.
    Biankin AV, Biankin SA, Kench JG, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hata T, Dal Molin M, Suenaga M, et al. Cyst fluid telomerase activity predicts the histologic grade of cystic neoplasms of the pancreas. Clin Cancer Res. 2016;22:5141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    House MG, Guo M, Iacobuzio-Donahue C, et al. Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis. 2003;24:193–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Sato N, Ueki T, Fukushima N, et al. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2002;123:365–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Sato N, Fukushima N, Maitra A, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 2004;164:903–14.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ohuchida K, Mizumoto K, Fujita H, et al. Sonic hedgehog is an early developmental marker of intraductal papillary mucinous neoplasms: clinical implications of mRNA levels in pancreatic juice. J Pathol. 2006;210:42–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Nishikawa N, Kimura Y, Okita K, et al. Intraductal papillary mucinous neoplasms of the pancreas: an analysis of protein expression and clinical features. J Hepatobiliary Pancreat Surg. 2006;13:327–35.PubMedCrossRefGoogle Scholar
  118. 118.
    Cheung W, Darfler MM, Alvarez H, et al. Application of a global proteomic approach to archival precursor lesions: deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology. 2008;8:608.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Siveke JT, Einwachter H, Sipos B, et al. Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell. 2007;12:266–79.PubMedCrossRefGoogle Scholar
  120. 120.
    Taki K, Ohmuraya M, Tanji E, et al. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm. Oncogene. 2016;35:2407–12.PubMedCrossRefGoogle Scholar
  121. 121.
    Dal Molin M, Hong SM, Hebbar S, et al. Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol. 2012;43:585–91.PubMedCrossRefGoogle Scholar
  122. 122.
    von Figura G, Fukuda A, Roy N, et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol. 2014;16:255–67.CrossRefGoogle Scholar
  123. 123.
    Vege SS, Ziring B, Jain R, et al. American Gastroenterological Association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:819–22; quize12–3.Google Scholar
  124. 124.
    Tanaka M, Chari S, Adsay V, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.CrossRefPubMedGoogle Scholar
  125. 125.
    Khalid A, McGrath KM, Zahid M, et al. The role of pancreatic cyst fluid molecular analysis in predicting cyst pathology. Clin Gastroenterol Hepatol. 2005;3:967–73.PubMedCrossRefGoogle Scholar
  126. 126.
    Khalid A, Zahid M, Finkelstein SD, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69:1095–102.PubMedCrossRefGoogle Scholar
  127. 127.
    Shen J, Brugge WR, Dimaio CJ, et al. Molecular analysis of pancreatic cyst fluid: a comparative analysis with current practice of diagnosis. Cancer. 2009;117:217–27.PubMedGoogle Scholar
  128. 128.
    Panarelli NC, Sela R, Schreiner AM, et al. Commercial molecular panels are of limited utility in the classification of pancreatic cystic lesions. Am J Surg Pathol. 2012;36:1434–43.PubMedCrossRefGoogle Scholar
  129. 129.
    Toll AD, Kowalski T, Loren D, et al. The added value of molecular testing in small pancreatic cysts. JOP. 2010;11:582–6.PubMedGoogle Scholar
  130. 130.
    Singhi AD, Zeh HJ, Brand RE, et al. American Gastroenterological Association guidelines are inaccurate in detecting pancreatic cysts with advanced neoplasia: a clinicopathologic study of 225 patients with supporting molecular data. Gastrointest Endosc. 2016;83:1107–1117.e2.PubMedCrossRefGoogle Scholar
  131. 131.
    Jones M, Zheng Z, Wang J, et al. Impact of next-generation sequencing on the clinical diagnosis of pancreatic cysts. Gastrointest Endosc. 2016;83:140–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Hruban RH, Pitman MB, Klimstra DS. Tumors of the pancreas, Atlas of tumor pathology. Fourth series, Fascicle 6th edition. Washington, DC: American Registry of Pathology and Armed Forces Institute of Pathology; 2007.Google Scholar
  133. 133.
    Zamboni G, Scarpa A, Bogina G, et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol. 1999;23:410–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Bassi C, Salvia R, Gumbs AA, et al. The value of standard serum tumor markers in differentiating mucinous from serous cystic tumors of the pancreas: CEA, Ca 19-9, Ca 125, Ca 15-3. Langenbecks Arch Surg. 2002;387:281–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Zamboni G, Kloppel G, Hruban R, et al. Mucinous cystic neoplasms of the pancreas. In: Hamilton SR, Aaltonen LA, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press; 2000. p. 234–6.Google Scholar
  136. 136.
    Jimenez RE, Warshaw AL, Z’Graggen K, et al. Sequential accumulation of K-ras mutations and p53 overexpression in the progression of pancreatic mucinous cystic neoplasms to malignancy. Ann Surg. 1999;230:501–9; discussion 509–11.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fukushima N, Sato N, Prasad N, et al. Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene. 2004;23:9042–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Lam MM, Swanson PE, Upton MP, et al. Ovarian-type stroma in hepatobiliary cystadenomas and pancreatic mucinous cystic neoplasms: an immunohistochemical study. Am J Clin Pathol. 2008;129:211–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Mao J, Ligon KL, Rakhlin EY, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 2006;66:10171–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11:229–43.PubMedCrossRefGoogle Scholar
  141. 141.
    Crippa S, Salvia R, Warshaw AL, et al. Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Ann Surg. 2008;247:571–9.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lewis GH, Wang H, Bellizzi AM, et al. Prognosis of minimally invasive carcinoma arising in mucinous cystic neoplasms of the pancreas. Am J Surg Pathol. 2013;37:601–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Departments of Pathology and Translational Molecular Pathology, Sheikh Ahmed Pancreatic Cancer Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations