Pathologic Classification and Biological Behavior of Pancreatic Neoplasia

  • Olca Basturk
  • Michelle D. Reid
  • N. Volkan Adsay
Reference work entry

Abstract

Pancreatic neoplasms are classified according to the normal cells they recapitulate. These neoplasms’ clinicopathologic and biologic characteristics are determined mostly by their cellular lineage. Most are of ductal lineage, characterized by tubular units, cysts, and papilla or mucin formation and expression of mucin-related glycoproteins and oncoproteins. There are also genetic and molecular alterations that are fairly tumor specific.

Invasive ductal adenocarcinoma (DA) constitutes the vast majority (>85%) of carcinomas of ductal lineage. DA is characterized by insidious infiltration and rapid dissemination, despite its relatively well-differentiated histologic appearance. Presumed precursors include microscopic intraductal proliferative changes now termed pancreatic intraepithelial neoplasia (PanIN). PanINs represent neoplastic transformation ranging from early mucinous change (low-grade PanIN) to frank carcinoma in situ (high-grade PanIN). A similar neoplastic spectrum characterizes intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), cystic ductal-mucinous tumors with papillae formation, which may be associated with DA. As such, these are regarded as mass-forming preinvasive neoplasia. Some IPMNs are associated with colloid-type invasive carcinoma, a clinicopathologically distinct indolent tumor.

Although most ductal pancreatic neoplasia show some degree of mucin formation, serous tumors, of which serous cystadenoma is the sole example, lack mucin formation, presumably because they recapitulate centroacinar ducts.

Among non-ductal pancreatic tumors, neuroendocrine neoplasms are the most common. The vast majority are well-differentiated, low-/intermediate-grade malignancies characterized by protracted clinical course. In contrast, poorly differentiated neuroendocrine carcinomas (small or large cell type) are exceedingly uncommon and highly aggressive. Pancreatic acinar lineage tumors, namely, acinar cell carcinomas and pancreatoblastomas – the latter mostly a childhood malignancy – are uncommon and are associated with aggressive clinical course, though not as dismal as DA. Solid pseudopapillary neoplasm is a female-predominant pancreatic tumor of undetermined lineage that follows a predominantly indolent course.

Keywords

Ductal Intraductal Mucinous Colloid Acinar Pancreatoblastoma Solid pseudopapillary Neuroendocrine 

References

  1. 1.
    Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Klimstra DS, Adsay V. Tumors of the pancreas. In: Odze RB, Goldblum JR, editors. Surgical pathology of the GI tract, liver, biliary tract and pancreas. Philadelphia: Saunders; 2015.Google Scholar
  3. 3.
    Thompson LDR, Basturk O, Adsay V. In: Mills SE, editor. Pancreas, in Sternberg’s diagnostic surgical pathology. Philadelphia: Wolters Kluwer Health; 2015.Google Scholar
  4. 4.
    Hruban RH, Pitman MB, Klimsra DS. Tumors of the pancreas. In: Silverberg SG, editor. AFIP Atlas of tumor pathology, vol. 6. Washington, DC: ARP Press; 2007.Google Scholar
  5. 5.
    Hruban RH, Iacobuzio-Donahue C, Wilentz RE, et al. Molecular pathology of pancreatic cancer. Cancer J. 2001;7:251–8.PubMedGoogle Scholar
  6. 6.
    Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40:612–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Waddell N, Pajic M, Patch AM, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hruban R, Kloppel G, Boffetta P, et al. Ductal adenocarcinoma of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumors. Lyon: WHO Press; 2010. p. 281–91.Google Scholar
  9. 9.
    Jorgensen MT, Fenger C, Kloppel G, et al. Long-term survivors among Danish patients after resection for ductal adenocarcinoma of the pancreas. Scand J Gastroenterol. 2008;43:581–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Adsay NV, Klimstra DS, Klöppel G. Inflammatory conditions and pseudotumors of the pancreas and ampulla. Semin Diagn Pathol. 2005;21:260.CrossRefGoogle Scholar
  11. 11.
    Adsay N, Zamboni G. Paraduodenal pancreatitis: a clinico-pathologically distinct entity unifying “Cystic Dystrophy of Heterotopic Pancreas”, “Para-Duodenal Wall Cyst” and “Groove Pancreatitis”. Semin Diagn Pathol. 2005;21:247–54.CrossRefGoogle Scholar
  12. 12.
    Basturk O, Bandyopadhyay S, Feng J, et al. Predilection of pancreatic ductal adenocarcinoma cells to form duct-like structures in vascular and perineural spaces, mimicking normal ducts and PanIN: a peculiar form of tumor-stroma interaction. Mod Pathol. 2008;20:1486A.Google Scholar
  13. 13.
    Bandyopadhyay S, Basturk O, Coban I, et al. Isolated solitary ducts (naked ducts) in adipose tissue: a specific but underappreciated finding of pancreatic adenocarcinoma and one of the potential reasons of understaging and high recurrence rate. Am J Surg Pathol. 2009;33:425–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Adsay V, Logani S, Sarkar F, et al. Foamy gland pattern of pancreatic ductal adenocarcinoma: a deceptively benign-appearing variant. Am J Surg Pathol. 2000;24:493–504.PubMedCrossRefGoogle Scholar
  15. 15.
    Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Adsay NV, Merati K, Andea A, et al. The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential MUC1 and MUC2 expression supports the existence of two separate pathways of carcinogenesis. Mod Pathol. 2002;15:1087–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Adsay NV, Merati K, Nassar H, et al. Pathogenesis of colloid (pure mucinous) carcinoma of exocrine organs: coupling of gel-forming mucin (MUC2) production with altered cell polarity and abnormal cell-stroma interaction may be the key factor in the morphogenesis and indolent behavior of colloid carcinoma in the breast and pancreas. Am J Surg Pathol. 2003;27:571–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Tan MC, Basturk O, Brannon AR, et al. GNAS and KRAS mutations define separate progression pathways in intraductal papillary mucinous neoplasm-associated carcinoma. J Am Coll Surg. 2015;220:845–54. e1PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Adsay V, Sarkar F, Vaitkevicius V, et al. Squamous cell and adenosquamous carcinomas of the pancreas: a clinicopathologic analysis of 11 cases (abstract). Mod Pathol. 2000;13:179A.Google Scholar
  20. 20.
    Makarova-Rusher OV, Ulahannan S, Greten TF, et al. Pancreatic squamous cell carcinoma: a population-based study of epidemiology, clinicopathologic characteristics and outcomes. Pancreas. 2016;45:1432.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Banville N, Geraghty R, Fox E, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37:1498–502.PubMedCrossRefGoogle Scholar
  22. 22.
    Muraki T, Reid MD, Basturk O, et al. Undifferentiated carcinoma with osteoclastic giant cells of the pancreas: clinicopathologic analysis of 38 cases highlights a more protracted clinical course than currently appreciated. Am J Surg Pathol. 2016;40:1203.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Iacobuzio-Donahue CA, Velculescu VE, Wolfgang CL, et al. Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing. Clin Cancer Res. 2012;18:4257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Basturk O, Hong SM, Wood LD, et al. A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol. 2015;39:1730–41.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Furukawa T, Adsay N, Albores-Saavedra J, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447(5):794–9. PMID: 16088402.  https://doi.org/10.1007/s00428-005-0039-7PubMedCrossRefGoogle Scholar
  27. 27.
    Adsay NV. Cystic lesions of the pancreas. Mod Pathol. 2007;20:71–93.CrossRefGoogle Scholar
  28. 28.
    Adsay NV, Kloppel G, Fukushima N, et al. Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumors of the digestive system. Lyon: WHO Press; 2010.Google Scholar
  29. 29.
    Adsay V, Mino-Kenudson M, Furukawa T, et al. Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of verona consensus meeting. Ann Surg. 2016;263:162–77.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tanaka M, Fernandez-del Castillo C, Adsay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.PubMedCrossRefGoogle Scholar
  31. 31.
    Adsay NV, Longnecker DS, Klimstra DS. Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol. 2000;17:16–30.PubMedGoogle Scholar
  32. 32.
    Adsay NV, Conlon KC, Zee SY, et al. Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer. 2002;94:62–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Adsay NV. The “new kid on the block”: intraductal papillary mucinous neoplasms of the pancreas: current concepts and controversies. Surgery. 2003;133:459–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Adsay NV, Merati K, Basturk O, et al. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol. 2004;28:839–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Adsay NV, Adair CF, Heffess CS, et al. Intraductal oncocytic papillary neoplasms of the pancreas. Am J Surg Pathol. 1996;20:980–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Reid MD, Saka B, Balci S, et al. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol. 2014;141:168–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Chari ST, Yadav D, Smyrk TC, et al. Study of recurrence after surgical resection of intraductal papillary mucinous neoplasm of the pancreas. Gastroenterology. 2002;123:1500–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Sohn TA, Yeo CJ, Cameron JL, et al. Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg. 2004;239:788–97. discussion 797–9PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tanaka M, Chari S, Adsay V, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Furukawa T, Kloppel G, Volkan Adsay N, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447:794–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Furukawa T, Kuboki Y, Tanji E, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wu J, Jiao Y, Dal Molin M, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108:21188–93.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Klimstra DS, Adsay NV, Dhall D, et al. Intraductal tubular carcinoma of the pancreas: clinicopathologic and immunohistochemical analysis of 18 cases. Mod Pathol. 2007;20:285A.CrossRefGoogle Scholar
  44. 44.
    Tajiri T, Tate G, Kunimura T, et al. Histologic and immunohistochemical comparison of intraductal tubular carcinoma, intraductal papillary-mucinous carcinoma, and ductal adenocarcinoma of the pancreas. Pancreas. 2004;29:116–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Tajiri T, Tate G, Inagaki T, et al. Intraductal tubular neoplasms of the pancreas: histogenesis and differentiation. Pancreas. 2005;30:115–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Date K, Okabayashi T, Shima Y, et al. Clinicopathological features and surgical outcomes of intraductal tubulopapillary neoplasm of the pancreas: a systematic review. Langenbeck’s Arch Surg. 2016;401:439–47.CrossRefGoogle Scholar
  47. 47.
    Yamaguchi H, Kuboki Y, Hatori T, et al. The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant. J Pathol. 2013;231:335–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Yamaguchi H, Shimizu M, Ban S, et al. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2009;33:1164–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Bhanot U, Basturk O, Berger M, et al. Molecular characteristics of the pancreatic intraductal tubulopapillary neoplasm (abstract). Mod Pathol. 2015;28:1761A.Google Scholar
  50. 50.
    Wilentz RE, Albores-Saavedra J, Hruban RH. Mucinous cystic neoplasms of the pancreas. Semin Diagn Pathol. 2000;17:31–43.PubMedGoogle Scholar
  51. 51.
    Thompson LDR, Becker RC, Pryzgodski RM, et al. Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am J Surg Pathol. 1999;23:1–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Zamboni G, Scarpa A, Bogina G, et al. Mucinous cystic tumors of the pancreas: clinicopathological features, prognosis, and relationship to other mucinous cystic tumors. Am J Surg Pathol. 1999;23:410–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Jang KT, Park SM, Basturk O, et al. Clinicopathologic characteristics of 29 invasive carcinomas arising in 178 pancreatic mucinous cystic neoplasms with ovarian-type stroma: implications for management and prognosis. Am J Surg Pathol. 2015;39:179–87.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Reid MD, Choi HJ, Memis B, et al. Serous neoplasms of the pancreas: a clinicopathologic analysis of 193 cases and literature review with new insights on macrocystic and solid variants and critical reappraisal of so-called “Serous Cystadenocarcinoma”. Am J Surg Pathol. 2015;39:1597–610.PubMedCrossRefGoogle Scholar
  55. 55.
    Thirabanjasak, D, Basturk, O, Altinel, D, et al. Is serous cystadenoma of pancreas a model of clear cell associated angiogenesis and tumorigenesis? Pancreatology 2008; (in press).Google Scholar
  56. 56.
    Kosmahl M, Pauser U, Peters K, et al. Cystic neoplasms of the pancreas and tumor-like lesions with cystic features: a review of 418 cases and a classification proposal. Virchows Arch. 2004;445:168–78.PubMedCrossRefGoogle Scholar
  57. 57.
    Tseng JF, Warshaw AL, Sahani DV, et al. Serous cystadenoma of the pancreas: tumor growth rates and recommendations for treatment. Ann Surg. 2005;242:413–9. discussion 419–21PubMedPubMedCentralGoogle Scholar
  58. 58.
    Matsumoto T, Hirano S, Yada K, et al. Malignant serous cystic neoplasm of the pancreas: report of a case and review of the literature. J Clin Gastroenterol. 2005;39:253–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Strobel O, Z’Graggen K, Schmitz-Winnenthal FH, et al. Risk of malignancy in serous cystic neoplasms of the pancreas. Digestion. 2003;68:24–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhu H, Qin L, Zhong M, et al. Carcinoma ex microcystic adenoma of the pancreas: a report of a novel form of malignancy in serous neoplasms. Am J Surg Pathol. 2012;36:305–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Klimstra DS, Arnold R, Capella C, et al. Neuroendocrine neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, et al., editors. WHO classification of tumours of the digestive system. Lyon: WHO Press; 2010.Google Scholar
  62. 62.
    Basturk O, Yang Z, Tang LH, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39:683–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sorbye H, Welin S, Langer SW, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol. 2013;24:152–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Reid MD, Balci S, Saka B, et al. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol. 2014;25:65–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Basturk O, Tang L, Hruban RH, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol. 2014;38:437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Morohoshi T, Held G, Kloppel G. Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases. Histopathology. 1983;7:645–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Basturk, O and Klimstra, D Poorly differentiated neuroendocrine carcinomas of the pancreas. In: La Rosa S, Sessa F, editors. Pancreatic neuroendocrine neoplasms: a practical approach to diagnosis, classification, and therapy. Switzerland: Springer; 2015.CrossRefGoogle Scholar
  68. 68.
    Shi C, Klimstra DS. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin Diagn Pathol. 2014;31:498–511.PubMedCrossRefGoogle Scholar
  69. 69.
    Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gupta A, Duque M, Saif MW. Treatment of poorly differentiated neuroendocrine carcinoma of the pancreas. JOP. 2013;14:381–3.PubMedGoogle Scholar
  72. 72.
    Smith J, Reidy-Lagunes D. The management of extrapulmonary poorly differentiated (high-grade) neuroendocrine carcinomas. Semin Oncol. 2013;40:100–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Singhi AD, Norwood S, Liu TC, et al. Acinar cell cystadenoma of the pancreas: a benign neoplasm or non-neoplastic ballooning of acinar and ductal epithelium? Am J Surg Pathol. 2013;37:1329–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Klimstra DS, Heffess CS, Oertel JE, et al. Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol. 1992;16:815–37.PubMedCrossRefGoogle Scholar
  75. 75.
    La Rosa S, Adsay V, Albarello L, et al. Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol. 2012;36:1782–95.PubMedCrossRefGoogle Scholar
  76. 76.
    Basturk O, Zamboni G, Klimstra DS, et al. Intraductal and papillary variants of acinar cell carcinomas: a new addition to the challenging differential diagnosis of intraductal neoplasms. Am J Surg Pathol. 2007;31:363–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Toll AD, Mitchell D, Yeo CJ, et al. Acinar cell carcinoma with prominent intraductal growth pattern: case report and review of the literature. Int J Surg Pathol. 2011;19:795–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Wood LD, Klimstra DS. Pathology and genetics of pancreatic neoplasms with acinar differentiation. Semin Diagn Pathol. 2014;31:491–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Klimstra DS, Adsay V. Acinar neoplasms of the pancreas-A summary of 25 years of research. Semin Diagn Pathol. 2016;33:307–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohike N, Kosmahl M, Klöppel G. Mixed acinar-endocrine carcinoma of the pancreas. A clinicopathological study and comparison with acinar-cell carcinoma. Virchows Arch. 2004;445:231–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Moore PS, Orlandini S, Zamboni G, et al. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer. 2001;84:253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Furlan D, Sahnane N, Bernasconi B, et al. APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation. Virchows Arch. 2014;464:553–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Jiao Y, Yonescu R, Offerhaus GJ, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Chmielecki J, Hutchinson KE, Frampton GM, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4:1398–405.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang L, Basturk O, Chmielecki J, et al. Development of BRAF FISH assay for the detection of BRAF gene rearrangements identified in pancreatic acinar cell carcinomas (abstract). Mod Pathol. 2015;28:1805A.Google Scholar
  86. 86.
    Vakiani E, Young RH, Carcangiu ML, et al. Acinar cell carcinoma of the pancreas metastatic to the ovary: a report of 4 cases. Am J Surg Pathol. 2008;32:1540–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Lowery MA, Klimstra DS, Shia J, et al. Acinar cell carcinoma of the pancreas: new genetic and treatment insights into a rare malignancy. Oncologist. 2011;16:1714–20.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Klimstra DS, Wenig BM, Adair CF, et al. Pancreatoblastoma. A clinicopathologic study and review of the literature. Am J Surg Pathol. 1995;19:1371–89.PubMedCrossRefGoogle Scholar
  89. 89.
    Cingolani N, Shaco-Levy R, Farruggio A, et al. Alpha-fetoprotein production by pancreatic tumors exhibiting acinar cell differentiation: study of five cases, one arising in a mediastinal teratoma. Hum Pathol. 2000;31:938–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Sorrentino S, Conte M, Nozza P, et al. Simultaneous occurrence of pancreatoblastoma and neuroblastoma in a newborn with beckwith-wiedemann syndrome. J Pediatr Hematol Oncol. 2010;32:e207–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Abraham SC, Wu TT, Klimstra DS, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol. 2001;159:1619–27.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bien E, Godzinski J, Dall’igna P, et al. Pancreatoblastoma: a report from the European cooperative study group for paediatric rare tumours (EXPeRT). Eur J Cancer. 2011;47:2347–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Tanaka Y, Kato K, Notohara K, et al. Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol. 2003;199:185–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Salman B, Brat G, Yoon YS, et al. The diagnosis and surgical treatment of pancreatoblastoma in adults: a case series and review of the literature. J Gastrointest Surg. 2013;17:2153–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Reid, DM, Akkas, G, Basturk, O, et al., Mixed adenoneuroendocrine carcinoma of the pancreas. In: La Rosa S, Sessa F, editors. Pancreatic neuroendocrine neoplasms: a practical approach to diagnosis, classification, and therapy. Switzerland: Springer; 2015.CrossRefGoogle Scholar
  96. 96.
    Basturk O, Coban I, Adsay NV. Pancreatic cysts: pathologic classification, differential diagnosis, and clinical implications. Arch Pathol Lab Med. 2009;133:423–38.PubMedGoogle Scholar
  97. 97.
    Estrella JS, Li L, Rashid A, et al. Solid pseudopapillary neoplasm of the pancreas: clinicopathologic and survival analyses of 64 cases from a single institution. Am J Surg Pathol. 2014;38:147–57.PubMedCrossRefGoogle Scholar
  98. 98.
    Klimstra DS, Wenig BM, Heffess CS. Solid-pseudopapillary tumor of the pancreas: a typically cystic tumor of low malignant potential. Semin Diagn Pathol. 2000;17:66–81.PubMedGoogle Scholar
  99. 99.
    Terris B, Cavard C. Diagnosis and molecular aspects of solid-pseudopapillary neoplasms of the pancreas. Semin Diagn Pathol. 2014;31:484–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Chetty R, Jain D, Serra S. p120 catenin reduction and cytoplasmic relocalization leads to dysregulation of E-cadherin in solid pseudopapillary tumors of the pancreas. Am J Clin Pathol. 2008;130:71–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Tang LH, Aydin H, Brennan MF, et al. Clinically aggressive solid pseudopapillary tumors of the pancreas: a report of two cases with components of undifferentiated carcinoma and a comparative clinicopathologic analysis of 34 conventional cases. Am J Surg Pathol. 2005;29:512–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Kang CM, Choi SH, Kim SC, et al. Predicting recurrence of pancreatic solid pseudopapillary tumors after surgical resection: a multicenter analysis in Korea. Ann Surg. 2014;260:348–55.PubMedCrossRefGoogle Scholar
  103. 103.
    Law JK, Ahmed A, Singh VK, et al. A systematic review of solid-pseudopapillary neoplasms: are these rare lesions? Pancreas. 2014;43:331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Adsay NV, Hasteh F, Cheng JD, et al. Lymphoepithelial cysts of the pancreas: a report of 12 cases and a review of the literature. Mod Pathol. 2002;15:492–501.PubMedCrossRefGoogle Scholar
  105. 105.
    Adsay NV, Hasteh F, Cheng JD, et al. Squamous-lined cysts of the pancreas: lymphoepithelial cysts, dermoid cysts (teratomas) and accessory-splenic epidermoid cysts. Semin Diagn Pathol. 2000;17:56–66.PubMedGoogle Scholar
  106. 106.
    Paal E, Thompson LD, Heffess CS. A clinicopathologic and immunohistochemical study of ten pancreatic lymphangiomas and a review of the literature [published erratum appears in Cancer 1998 Aug 15;83(4):824]. Cancer. 1998;82:2150–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Othman M, Basturk O, Groisman G, et al. Squamoid cyst of pancreatic ducts: a distinct type of cystic lesion in the pancreas. Am J Surg Pathol. 2007;31:291–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bismar TA, Basturk O, Gerald WL, et al. Desmoplastic small cell tumor in the pancreas. Am J Surg Pathol. 2004;28:808–12.PubMedCrossRefGoogle Scholar
  109. 109.
    Adsay NV, Basturk O, Klimstra DS, et al. Pancreatic pseudotumors: non-neoplastic solid lesions of the pancreas that clinically mimic pancreas cancer. Semin Diagn Pathol. 2004;21:260–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Zamboni G, Lüttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch. 2004;445:552–63.PubMedCrossRefGoogle Scholar
  111. 111.
    Klimstra DS, Adsay NV. Lymphoplasmacytic sclerosing (autoimmune) pancreatitis. Semin Diagn Pathol. 2004;21:237–46.PubMedCrossRefGoogle Scholar
  112. 112.
    Sah RP, Chari ST. Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis. Curr Opin Rheumatol. 2011;23:108–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Chari ST. Diagnosis of autoimmune pancreatitis using its five cardinal features: introducing the Mayo Clinic’s HISORt criteria. J Gastroenterol. 2007;42(Suppl 18):39–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Chari ST, Smyrk TC, Levy MJ, et al. Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 2006;4:1010–6. quiz 934PubMedCrossRefGoogle Scholar
  115. 115.
    Deshpande V, Gupta R, Sainani N, et al. Subclassification of autoimmune pancreatitis: a histologic classification with clinical significance. Am J Surg Pathol. 2011;35:26–35.PubMedCrossRefGoogle Scholar
  116. 116.
    Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang L, Chari S, Smyrk TC, et al. Autoimmune pancreatitis (AIP) type 1 and type 2: an international consensus study on histopathologic diagnostic criteria. Pancreas. 2011;40:1172–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Kloppel G, Detlefsen S, Chari ST, et al. Autoimmune pancreatitis: the clinicopathological characteristics of the subtype with granulocytic epithelial lesions. J Gastroenterol. 2010;45:787–93.PubMedCrossRefGoogle Scholar
  119. 119.
    Hart PA, Kamisawa T, Brugge WR, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Detlefsen S, Zamboni G, Frulloni L, et al. Clinical features and relapse rates after surgery in type 1 autoimmune pancreatitis differ from type 2: a study of 114 surgically treated European patients. Pancreatology. 2012;12:276–83.PubMedCrossRefGoogle Scholar
  121. 121.
    Kalb B, Martin DR, Sarmiento JM, et al. Paraduodenal pancreatitis: clinical performance of MR imaging in distinguishing from carcinoma. Radiology. 2013;269:475–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Altinel D, Basturk O, Sarmiento JM, et al. Lipomatous pseudohypertrophy of the pancreas: a clinicopathologically distinct entity. Pancreas. 2010;39:392–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Adsay NV, Andea A, Basturk O, et al. Secondary tumors of the pancreas: an analysis of a surgical and autopsy database and review of the literature. Virchows Arch. 2004;444:527–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Klimstra DS, Adsay NV. Benign and malignant tumors of the pancreas. In: Odze RD, Goldblum JR, Crawford JM, editors. Surgical pathology of the GI tract, liver, biliary tract and pancreas. Philadelphia: Saunders; 2004. p. 699–731.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Olca Basturk
    • 1
  • Michelle D. Reid
    • 2
  • N. Volkan Adsay
    • 2
  1. 1.Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Pathology, and Laboratory MedicineEmory University School of Medicine and Winship Cancer InstituteAtlantaUSA

Section editors and affiliations

  • Raul A. Urrutia
    • 1
  • Markus W. Büchler
    • 2
  • John Neoptolemos
    • 3
  1. 1.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  2. 2.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  3. 3.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations