Notch Signaling in Pancreatic Morphogenesis and Pancreatic Cancer Pathogenesis

Reference work entry

Abstract

Notch signaling is the focus of investigation in a large number of laboratories around the world due to its pleiotropic effect in regulating normal development and alterations in cancer. During the last few decades, the scientific community studying this pathway has made significant contributions to our understanding of the cellular role of Notch signaling in regulating proliferation, differentiation, apoptosis, migration, branching morphogenesis, and angiogenesis. Similar to observations with other signaling cascades, such as TGBβ, besides its role in morphogenesis, Notch signaling becomes dysregulated in adult tissue and contributes to the development and maintenance of the cancer phenotype. Elegant studies in this field of research have led to not only the better understanding of the molecules within the pathway but, as a consequence, rational design of drugs that can inhibit Notch signaling with promising results. The study of Notch signaling in the pancreas has dawned on solid ground and has progressed to a better understanding of the pathway at the mechanistic level along with the development of some promising pharmacological antagonists. Thus, investigations in this field are predicted to continue to advance the field of pancreatic cancer research in a significant manner for decades to come.

Keywords

Notch Morphogenesis Development Signaling Pancreatic cancer γ-Secretase 

Notes

Acknowledgments

Work in the authors’ laboratories is supported by funding from the National Institutes of Health DK 52913 (to R.U.) and CA178627 (to G.L.), ChiRhoClin Research Institute, as well as the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701).

References

  1. 1.
    Dexter JS. The analysis of a case of continuous variation in Drosophila by a study of its linkage relations. Am Nat. 1914;48:712–58.CrossRefGoogle Scholar
  2. 2.
    Kidd S, Kelley MR, Young MW. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol. 1986;6:3094–108.CrossRefGoogle Scholar
  3. 3.
    Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985;43:567–81.CrossRefGoogle Scholar
  4. 4.
    Fortini ME, Rebay I, Caron LA, Artavanis-Tsakonas S. An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature. 1993;365:555–7.CrossRefGoogle Scholar
  5. 5.
    Ghosh B, Leach SD. Interactions between hairy/enhancer of split-related proteins and the pancreatic transcription factor Ptf1-p48 modulate function of the PTF1 transcriptional complex. Biochem J. 2006;393:679–85.CrossRefGoogle Scholar
  6. 6.
    Lomberk G, Fernandez-Zapico ME, Urrutia R. When developmental signaling pathways go wrong and their impact on pancreatic cancer development. Curr Opin Gastroenterol. 2005;21:555–60.CrossRefGoogle Scholar
  7. 7.
    Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci U S A. 2003;100:14920–5.CrossRefGoogle Scholar
  8. 8.
    Nakhai H, Siveke J, Klein B, Mendoza-Torres L, Mazur P, Algul H, Radtke F, Strobl L, Zimber-Strobl U, Schmid R. Conditional ablation of Notch signaling in pancreatic development. Development. 2008;135:2757–65.CrossRefGoogle Scholar
  9. 9.
    McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the Notch signaling pathway. Am J Hum Genet. 2006;79:169–73.CrossRefGoogle Scholar
  10. 10.
    Miele L, Golde T, Osborne B. Notch signaling in cancer. Curr Mol Med. 2006;6:905–18.CrossRefGoogle Scholar
  11. 11.
    Warthen D, Moore E, Kamath B, Morrissette J, Sanchez P, Piccoli D, Krantz I, Spinner N. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat. 2006;27:436–43.CrossRefGoogle Scholar
  12. 12.
    Siveke T, ÄìMartellato CL, Lee M, Mazur P, Nakhai H, Radtke F, Schmid R. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology. 2008;134:544–555.e543.CrossRefGoogle Scholar
  13. 13.
    De La OJ-P, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci. 2008;105:18907–12.CrossRefGoogle Scholar
  14. 14.
    Fleming RJ. Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol. 1998;9:599–607.CrossRefGoogle Scholar
  15. 15.
    D’Souza B, Miyamoto A, Weinmaster G. The many facets of Notch ligands. Oncogene. 2008;27:5148–67.CrossRefGoogle Scholar
  16. 16.
    LaVoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by {alpha}-secretase and presenilin/{gamma}-secretase and release signaling fragments. J Biol Chem. 2003;278:34427–37.CrossRefGoogle Scholar
  17. 17.
    Gonczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol. 2008;9:355–66.CrossRefGoogle Scholar
  18. 18.
    Gordon WR, Arnett KL, Blacklow SC. The molecular logic of Notch signaling – a structural and biochemical perspective. J Cell Sci. 2008;121:3109–19.CrossRefGoogle Scholar
  19. 19.
    Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MAT. Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics. 2006;174:1947–61.CrossRefGoogle Scholar
  20. 20.
    Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y, Hamada Y, Yazaki Y, Hirai H. Mouse Jagged1 physically interacts with Notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem. 1999;274:32961–9.CrossRefGoogle Scholar
  21. 21.
    Pintar A, De Biasio A, Popovic M, Ivanova N, Pongor S. The intracellular region of notch ligands: does the tail make the difference? Biol Direct. 2007;2:19.CrossRefGoogle Scholar
  22. 22.
    Wheeler SR, Stagg SB, Crews ST. Multiple Notch signaling events control Drosophila CNS midline neurogenesis, gliogenesis and neuronal identity. Development. 2008;135:3071–9.CrossRefGoogle Scholar
  23. 23.
    Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol. 2007;176:445–58.CrossRefGoogle Scholar
  24. 24.
    Lomberk G, Urrutia R. Primers on molecular pathways – Notch. Pancreatology. 2008;8:103–4.CrossRefGoogle Scholar
  25. 25.
    Steiner H, Fluhrer R, Haass C. Intramembrane proteolysis by {gamma}-secretase. J Biol Chem. 2008;283:29627–31.CrossRefGoogle Scholar
  26. 26.
    Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, Logeat F. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci U S A. 2003;100:7638–43.CrossRefGoogle Scholar
  27. 27.
    Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66(10):1631–46.CrossRefGoogle Scholar
  28. 28.
    McElhinny AS, Li JL, Wu L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene. 2008;27:5138–47.CrossRefGoogle Scholar
  29. 29.
    Fischer A, Gessler M. Delta Notch and then? Protein interactions and proposed modes of repression by Hes and hey bHLH factors. Nucleic Acids Res. 2007;35:4583–96.CrossRefGoogle Scholar
  30. 30.
    Esni F, Ghosh B, Biankin AV, Lin JW, Albert MA, Yu X, MacDonald RJ, Civin CI, Real FX, Pack MA, Ball DW, Leach SD. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development. 2004;131:4213–24.CrossRefGoogle Scholar
  31. 31.
    Leach S. Epithelial differentiation in pancreatic development and neoplasia: new niches for nestin and Notch. J Clin Gastroenterol. 2005;39:S78–82.CrossRefGoogle Scholar
  32. 32.
    Guo X, Wang X-F. Signaling cross-talk between TGF-[beta]/BMP and other pathways. Cell Res. 2009;19:71–88.CrossRefGoogle Scholar
  33. 33.
    Holderfield MT, Hughes CCW. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-{beta} in vascular morphogenesis. Circ Res. 2008;102:637–52.CrossRefGoogle Scholar
  34. 34.
    Krejcí A, Bernard F, Housden B, Collins S, Bray S. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal. 2009;2:ra.1.CrossRefGoogle Scholar
  35. 35.
    Shih I-M, Wang T-L. Notch signaling, {gamma}-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67:1879–82.CrossRefGoogle Scholar
  36. 36.
    Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. Essential role of endothelial Notch1 in angiogenesis. Circulation. 2005;111:1826–32.CrossRefGoogle Scholar
  37. 37.
    Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134:2709–18.CrossRefGoogle Scholar
  38. 38.
    MacKenzie F, Duriez P, Larrivee B, Chang L, Pollet I, Wong F, Yip C, Karsan A. Notch4-induced inhibition of endothelial sprouting requires the ankyrin repeats and involves signaling through RBP-J{kappa}. Blood. 2004;104:1760–8.CrossRefGoogle Scholar
  39. 39.
    Truty M, Urrutia R. Basics of TGF-beta and pancreatic cancer. Pancreatology. 2007;7:423–35.CrossRefGoogle Scholar
  40. 40.
    Horowitz A, Simons M. Branching morphogenesis. Circ Res. 2008;103:784–95.CrossRefGoogle Scholar
  41. 41.
    Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512–23.CrossRefGoogle Scholar
  42. 42.
    Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, Ibanez CF. Cross-talk between the Notch and TGF-{beta} signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 2003;163:723–8.CrossRefGoogle Scholar
  43. 43.
    Niimi H, Pardali K, Vanlandewijck M, Heldin C-H, Moustakas A. Notch signaling is necessary for epithelial growth arrest by TGF-{beta}. J Cell Biol. 2007;176:695–707.CrossRefGoogle Scholar
  44. 44.
    Itoh F, Itoh S, Goumans M, Valdimarsdottir G, Iso T, Dotto G, Hamamori Y, Kedes L, Kato M, ten Dijke P. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 2004;23:541–51.CrossRefGoogle Scholar
  45. 45.
    Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445:781–4.CrossRefGoogle Scholar
  46. 46.
    Banerjee S, Mehta S, Haque I, Sengupta K, Dhar K, Kambhampati S, Van Veldhuizen PJ, Banerjee SK. VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1-PI3K axis. Biochemistry. 2008;47:3345–51.CrossRefGoogle Scholar
  47. 47.
    Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci. 2007;104:3219–24.CrossRefGoogle Scholar
  48. 48.
    Jiang Z, Song J, Qi F, Xiao A, An X, Liu N-A, Zhu Z, Zhang B, Lin S. Exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish. PLoS Biol. 2008;6:e293.CrossRefGoogle Scholar
  49. 49.
    Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic [beta] cell. Mol Cell Endocrinol. 2008;294:1–9.CrossRefGoogle Scholar
  50. 50.
    Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Kawaguchi M, Terao M, Doi R, Wright CVE, Hoshino M, Chiba T, Uemoto S. Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes. 2008;57:2421–31.CrossRefGoogle Scholar
  51. 51.
    Masui T, Long Q, Beres T, Magnuson M, MacDonald R. Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev. 2007;21:2629–43.CrossRefGoogle Scholar
  52. 52.
    Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, de Angelis MH, Lendahl U, Edlund H. Notch signalling controls pancreatic cell differentiation. Nature. 1999;400:877–81.CrossRefGoogle Scholar
  53. 53.
    Kopinke D, Brailsford M, Shea JE, Leavitt R, Scaife CL, Murtaugh LC. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development. 2011;138:431.CrossRefGoogle Scholar
  54. 54.
    Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates TGF[alpha]-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3:565–76.CrossRefGoogle Scholar
  55. 55.
    Plentz R, Park JS, Rhim AD, Abravanel D, Hezel AF, Sharma SV, Gurumurthy S, Deshpande V, Kenific C, Settleman J, Majumder PK, Stanger BZ, Bardeesy N. Inhibition of γ-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology. 2009;136:1741–1749.e1746.CrossRefGoogle Scholar
  56. 56.
    Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.CrossRefGoogle Scholar
  57. 57.
    Ntziachristos P, Lim JS, Sage J, Aifantis I. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell. 2014;25:318–34.CrossRefGoogle Scholar
  58. 58.
    Büchler P, Gazdhar A, Schubert M, Giese N, Reber H, Hines O, Giese T, Ceyhan G, Müller M, Büchler M, Friess H. The Notch signaling pathway is related to neurovascular progression of pancreatic cancer. Ann Surg. 2005;242:791–800.CrossRefGoogle Scholar
  59. 59.
    Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, Miller DK, Christ AN, Bruxner TJC, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pinese M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham JS, Duthie F, Oien K, Hair J, Grützmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM, Australian Pancreatic Cancer Genome I, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Musgrove EA, Bailey U-MH, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.CrossRefGoogle Scholar
  60. 60.
    Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 2002;8:979–86.CrossRefGoogle Scholar
  61. 61.
    Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A, Artavanis-Tsakonas S. Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004;165:695–705.CrossRefGoogle Scholar
  62. 62.
    Hingorani SR, Petricoin Iii EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CVE, Hruban RH, Lowy AM, Tuveson DA. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.CrossRefGoogle Scholar
  63. 63.
    Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech. 2014;7:883.CrossRefGoogle Scholar
  64. 64.
    Wagner M, Greten F, Weber C, Koschnick S, Torsten Mattfeldt T, Deppert W, Kern H, Adler G, Roland M, Schmid R. A murine tumor progression model for pancreatic cancer recapitulating the genetic alterations of the human disease. Genes Dev. 2001;15(3):286–93.CrossRefGoogle Scholar
  65. 65.
    Hanlon L, Avila JL, Demarest RM, Troutman S, Allen M, Ratti F, Rustgi AK, Stanger BZ, Radtke F, Adsay V, Long F, Capobianco AJ, Kissil JL. Notch1 functions as a tumor suppressor in a model of K-ras–induced pancreatic ductal adenocarcinoma. Cancer Res. 2010;70:4280.CrossRefGoogle Scholar
  66. 66.
    Mazur PK, Einwächter H, Lee M, Sipos B, Nakhai H, Rad R, Zimber-Strobl U, Strobl LJ, Radtke F, Klöppel G, Schmid RM, Siveke JT. Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci. 2010;107:13438–43.CrossRefGoogle Scholar
  67. 67.
    Avila JL, Troutman S, Durham A, Kissil JL. Notch1 is not required for acinar-to-ductal metaplasia in a model of Kras-induced pancreatic ductal adenocarcinoma. PLoS One. 2012;7:e52133.CrossRefGoogle Scholar
  68. 68.
    Hidalgo-Sastre A, Brodylo RL, Lubeseder-Martellato C, Sipos B, Steiger K, Lee M, von Figura G, Grünwald B, Zhong S, Trajkovic-Arsic M, Neff F, Schmid RM, Siveke JT. Hes1 controls exocrine cell plasticity and restricts development of pancreatic ductal adenocarcinoma in a mouse model. Am J Pathol. 2016;186(11):2934–44.CrossRefGoogle Scholar
  69. 69.
    Thomas MM, Zhang Y, Mathew E, Kane KT, Maillard I, Pasca di Magliano M. Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis. BMC Cancer. 2014;14:1–11.CrossRefGoogle Scholar
  70. 70.
    Fujita H, Ohuchida K, Mizumoto K, Egami T, Miyoshi K, Moriyama T, Cui L, Yu J, Zhao M, Manabe T, Tanaka M. Tumor–stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells. Cancer Sci. 2009;100:2309–17.CrossRefGoogle Scholar
  71. 71.
    Cao F, Li J, Sun H, Liu S, Cui Y, Li F. HES 1 is essential for chemoresistance induced by stellate cells and is associated with poor prognosis in pancreatic cancer. Oncol Rep. 2015;33:1883–9.CrossRefGoogle Scholar
  72. 72.
    Kang M, Jiang B, Xu B, Lu W, Guo Q, Xie Q, Zhang B, Dong X, Chen D, Wu Y. Delta like ligand 4 induces impaired chemo-drug delivery and enhanced chemoresistance in pancreatic cancer. Cancer Lett. 2013;330:11–21.CrossRefGoogle Scholar
  73. 73.
    Abel EV, Kim EJ, Wu J, Hynes M, Bednar F, Proctor E, Wang L, Dziubinski ML, Simeone DM. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer. PLoS One. 2014;9:e91983.CrossRefGoogle Scholar
  74. 74.
    Lee JY, Song SY, Park JY. Notch pathway activation is associated with pancreatic cancer treatment failure. Pancreatology. 2014;14:48–53.CrossRefGoogle Scholar
  75. 75.
    Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 2006;5:483–93.CrossRefGoogle Scholar
  76. 76.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.CrossRefGoogle Scholar
  77. 77.
    Wolfe M. Gamma-secretase modulators. Curr Alzheimer Res. 2007;4:571.CrossRefGoogle Scholar
  78. 78.
    De Jesus-Acosta A, Laheru D, Maitra A, Arcaroli J, Rudek MA, Dasari A, Blatchford PJ, Quackenbush K, Messersmith W. A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest New Drugs. 2014;32:739–45.CrossRefGoogle Scholar
  79. 79.
    Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, Streppel MM, Rasheed ZA, Hidalgo M, Maitra A, Rajeshkumar NV. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013;335:41–51.CrossRefGoogle Scholar
  80. 80.
    Takebe N, Nguyen D, Yang SX. Targeting Notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014;141:140–9.CrossRefGoogle Scholar
  81. 81.
    Notch inhibitor shows modest efficacy. Cancer Discov. 2016; 7(2):OF3Google Scholar
  82. 82.
    Pant S, Jones SF, Kurkjian CD, Infante JR, Moore KN, Burris HA, McMeekin DS, Benhadji KA, Patel BKR, Frenzel MJ, Kursar JD, Zamek-Gliszczynski MJ, Yuen ESM, Chan EM, Bendell JC. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer. 2016;56:1–9.CrossRefGoogle Scholar
  83. 83.
    Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther. 2013;139:95–110.CrossRefGoogle Scholar
  84. 84.
    Andersson ER, Lendahl U. Therapeutic modulation of Notch signalling – are we there yet? Nat Rev Drug Discov. 2014;13:357–78.CrossRefGoogle Scholar
  85. 85.
    Yen W-C, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J, Tang T, Wallace B, Wang M, Zhang C, Kapoun AM, Lewicki J, Gurney A, Hoey T. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21:2084.CrossRefGoogle Scholar
  86. 86.
    O’Reilly E, Smith L, Bendell J, Rangwala F, Schmidt W, Gluck W, Kapoun A, Xu L, Hill D, Zhou L, Dupont J, Cohn A. Final results of phase Ib of anticancer stem cell antibody tarextumab (OMP-59R5, TRXT, anti-Notch 2/3) in combination with nab-paclitaxel and gemcitabine (Nab-P+Gem) in patients (pts) with untreated metastatic pancreatic cancer (mPC). ASCO Meeting Abstracts. 2015;33:278.Google Scholar
  87. 87.
    McKeage M, Kotasek D, Millward M, Markman B, Jameson M, Hidalgo M, Harris D, Stagg R, Dupont J, Hughes B. 598 a phase 1b study of demcizumab plus pemetrexed and carboplatin in patients with 1st line non-small cell lung cancer (NSCLC). Eur J Cancer. 2012;48:183–4.CrossRefGoogle Scholar
  88. 88.
    Moellering RE, Cornejo M, Davis TN, Bianco CD, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462:182–8.CrossRefGoogle Scholar
  89. 89.
    Funahashi Y, Hernandez SL, Das I, Ahn A, Huang J, Vorontchikhina M, Sharma A, Kanamaru E, Borisenko V, DeSilva DM, Suzuki A, Wang X, Shawber CJ, Kandel JJ, Yamashiro DJ, Kitajewski J. A Notch1 Ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res. 2008;68:4727.CrossRefGoogle Scholar
  90. 90.
    Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Buchler MW, Salnikov AV, Herr I. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther. 2011;19:188–95.CrossRefGoogle Scholar
  91. 91.
    Zhou W, Kallifatidis G, Baumann B, Rausch V, Mattern J, Gladkich J, Giese N, Moldenhauer G, Wirth T, Buchler MW, Salnikov AV, Herr I. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol. 2010;37:551–61.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeUSA
  2. 2.Division of Research, Department of Surgery and Genomic Sciences and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeUSA

Section editors and affiliations

  • Raul A. Urrutia
    • 1
  • Markus W. Büchler
    • 2
  • John Neoptolemos
    • 3
  • Thilo Hackert
    • 4
  1. 1.Mayo Clinic Cancer CenterMayo ClinicRochesterUSA
  2. 2.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
  3. 3.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK
  4. 4.Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations