Encyclopedia of Social Network Analysis and Mining

2018 Edition
| Editors: Reda Alhajj, Jon Rokne

Recommender Systems, Basics of

  • Marco de GemmisEmail author
  • Pasquale Lops
  • Marco Polignano
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7131-2_110158

Synonyms

Glossary

Information filtering

Information seeking process that typically refers to selection of relevant information, or rejection of irrelevant information, from a stream of incoming data

Information overload

Cognition problem that refers to the difficulty a person can have making decisions, caused by the presence of too much information

Item

Object or information that can be provided by an information source

Personalization system

System that delivers items to user according to their preferences

Rating

Any relevance feedback provided by users on items

Recommendation list

A ranked list of suggested items provided by a recommender system

User profile

A structured representation of user interests

Definition

Recommender Systems (RSs) are filtering tools that guide the user in a personalized way to interesting or useful objects (items) in a large space of possible options (Burke 2002). They collect information about user...

This is a preview of subscription content, log in to check access.

References

  1. Adomavicius G, Kwon Y (2012) Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans Knowl Data Eng 24(5):896–911CrossRefGoogle Scholar
  2. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17:734–749CrossRefGoogle Scholar
  3. Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Recommender Systems Handbook. Springer, New York/London, pp 217–253zbMATHGoogle Scholar
  4. Arnold MB (1960) Emotion and personality. Columbia University Press, New YorkGoogle Scholar
  5. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison-Wesley Longman Publishing Co., Inc., BostonGoogle Scholar
  6. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40:66–72CrossRefGoogle Scholar
  7. Bambini R, Cremonesi P, Turrin R (2011) A recommender system for an IPTV service provider: a real large-scale production environment. In: Recommender systems handbook. Springer, New York/London, pp 299–331Google Scholar
  8. Burke R (2002) Hybrid recommender systems: survey and experiments. User Model User-Adap Inter 12(4):331–370zbMATHCrossRefGoogle Scholar
  9. Burke R (2007) Hybrid web recommender systems. In: The adaptive web. Springer, Berlin/Heidelberg, pp 377–408CrossRefGoogle Scholar
  10. Burke RD, Hammond KJ, Young BC (1996) Knowledge-based navigation of complex information spaces. In: Proceedings of the thirteenth national conference on artificial intelligence - vol 1, AAAI’96, AAAI Press, 1996. Menlo Park, California. pp 462–468Google Scholar
  11. Cambria E, Schuller B, Liu B, Wang H, Havasi C (2013) Knowledge-based approaches to concept-level sentiment analysis. IEEE Intell Syst 28(2):12–14CrossRefGoogle Scholar
  12. Campos J, de Figueiredo AD (2001) Searching the unsearchable: inducing serendipitous insights. In: Proceedings of the workshop program at the fourth international conference on case-based reasoning, ICCBR, 2001, pp 159–164Google Scholar
  13. Castells P, Wang J, Lara R, Zhang D (2011) Workshop on novelty and diversity in recommender systems – DiveRS. In: Proceedings of the 5th ACM conference on recommender systems, RecSys 2011, ACM, 2011, pp 393–394Google Scholar
  14. Cremonesi P, Turrin R, Airoldi F (2011) Hybrid algorithms for recommending new items. In: Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems, HetRec ‘11, ACM, New York, 2011, pp 33–40Google Scholar
  15. Cremonesi P, Said A, Tikk D, Zhou MX (2016) Introduction to the special issue on recommender system benchmarking. ACM TIST 7(3):38Google Scholar
  16. Degemmis M, Lops P, Semeraro G (2007) A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model User-Adapt Interact 17(3):217–255CrossRefGoogle Scholar
  17. Ekstrand MD, Riedl J, Konstan JA (2011) Collaborative filtering recommender systems. Found Trends Human-Comput Interact 4(2):175–243CrossRefGoogle Scholar
  18. Fleder D, Hosanagar K (2009) Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manag Sci 55(5):697–712CrossRefGoogle Scholar
  19. Ge M, Delgado-Battenfeld C, Jannach D (2010) Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the 2010 ACM conference on recommender systems, RecSys 2010, ACM, Barcelona, 26–30 Sept 2010, pp 257–260Google Scholar
  20. de Gemmis M, Lops P, Musto C, Narducci F, Semeraro G (2015a) Semantics-aware content-based recommender systems. In: Ricci F et al (eds) Recommender systems handbook. Springer, Heidelberg, pp 119–159CrossRefGoogle Scholar
  21. de Gemmis M, Lops P, Semeraro G, Musto C (2015b) An investigation on the serendipity problem in recommender systems. Information Processing and Management 51(5):695–717CrossRefGoogle Scholar
  22. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information tapestry. Commun ACM 35(12):61–70CrossRefGoogle Scholar
  23. González G, López B, De La Rosa JL (2004) Managing emotions in smart user models for recommender systems. ICEIS 5:187–194Google Scholar
  24. Gonzalez G, De La Rosa JL, Montaner M, Delfin S (2007) Embedding emotional context in recommender systems. In: Data engineering workshop, 2007 I.E. 23rd international conference on, IEEE, 2007. Los Alamitos, California. pp 845–852Google Scholar
  25. Gunawardana A, Shani G (2011) Evaluating recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, New York/London, pp 265–308CrossRefGoogle Scholar
  26. Halevy AY, Norvig P, Pereira F (2009) The unreasonable effectiveness of data. IEEE Intell Syst 24(2):8–12CrossRefGoogle Scholar
  27. Hanani U, Shapira B, Shoval P (2001) Information filtering: overview of issues, research and systems. User Model User-Adap Inter 11:203–259zbMATHCrossRefGoogle Scholar
  28. Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans. Interact Intell Syst 5(4):19:1–19:19CrossRefGoogle Scholar
  29. Hauswald J, Laurenzano MA, Zhang Y, Li C, Rovinski A, Khurana A, Dreslinski RG, Mudge T, Petrucci V, Tang L et al. (2015) Sirius: an open end-to-end voice and vision personal assistant and its implications for future warehouse scale computers. In: ACM SIGPLAN notices, vol 50, ACM, 2015. New York, US. pp 223–238CrossRefGoogle Scholar
  30. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22:5–53CrossRefGoogle Scholar
  31. Hill W, Stead L, Rosenstein M, Furnas G (1995) Recommending and evaluating choices in a virtual community of use. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ‘95, ACM Press/Addison-Wesley Publishing Co., New York, 1995, pp 194–201Google Scholar
  32. Hurley N, Zhang M (2011) Novelty and diversity in top-N recommendation – analysis and evaluation. ACM Trans Internet Technol 10(4):14CrossRefGoogle Scholar
  33. Jannach D, Zanker M, Felfernig A, Friedrich G (2011) Recommender systems: an introduction. Cambridge University Press, New York, USGoogle Scholar
  34. Kawamae N (2010) Serendipitous recommendations via innovators. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval, ACM, 2010. New York, US. pp 218–225Google Scholar
  35. Kawamae N, Sakano H, Yamada T (2009) Personalized recommendation based on the personal innovator degree. In: Proceedings of the ACM conference on recommender systems, ACM, 2009. New York, US. pp 329–332Google Scholar
  36. Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J (1997) Grouplens: applying collaborative filtering to usenet news. Commun ACM 40(3):77–87CrossRefGoogle Scholar
  37. Lawton G (2011) In the News. Simplifying Mobile Recommendation Technology with AI. IEEE Intell Syst 26(3):8–9CrossRefGoogle Scholar
  38. Lazarus RS (1966) Psychological stress and the coping process. McGraw-Hill, New YorkGoogle Scholar
  39. Linden G, Smith B, York J (2003) Amazon.com recommendations – item-to-item collaborative filtering. IEEE Internet Comput 7(1):76–80CrossRefGoogle Scholar
  40. Liu J, Dolan P, Pedersen ER (2010) Personalized news recommendation based on click behavior. In: Proceedings of the 15th international conference on intelligent user interfaces, IUI ‘10, ACM, New York, 2010, pp 31–40Google Scholar
  41. Lops P, de Gemmis M, Semeraro G (2011) Content-based recommender systems: state of the art and trends. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, Berlin, pp 73–105CrossRefGoogle Scholar
  42. Maccatrozzo V (2012) Burst the filter bubble: using semantic web to enable serendipity. In: Proceedings of the 11th international conference on the semantic web – volume part II, ISWC’12, Springer, Berlin/Heidelberg, 2012, pp 391–398CrossRefGoogle Scholar
  43. Maes P (1994) Agents that reduce work and information overload. Commun ACM 37(7):31–40CrossRefGoogle Scholar
  44. Mayer JD, Salovey P, Caruso DR, Sitarenios G (2003) Measuring emotional intelligence with the msceit v2. 0. Emotion 3(1):97CrossRefGoogle Scholar
  45. McLaughlin MR, Herlocker JL (2004) A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR 2004: proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval, Sheffield, 25–29 July 2004, pp 329–336Google Scholar
  46. McNee SM, Riedl J, Konstan JA (2006) Being accurate is not Enough: How accuracy metrics have hurt recommender systems. In: Extended abstracts proceedings of the 2006 conference on human factors in computing systems, ACM, 2006. New York, US. pp 1097–1101Google Scholar
  47. Mehrabian A (1996) Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr Psychol 14(4):261–292MathSciNetCrossRefGoogle Scholar
  48. Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168Google Scholar
  49. Murakami T, Mori K, Orihara R (2008) Metrics for evaluating the serendipity of recommendation lists. In: New frontiers in artificial intelligence, volume 4914 of lecture notes in computer science, Springer, 2008. Berlin, Heidelberg. pp 40–46Google Scholar
  50. Musto C, Semeraro G, Lops P, de Gemmis M, Lekkas G (2015) Personalized finance advisory through case-based recommender systems and diversification strategies. Decis Support Syst 77:100–111CrossRefGoogle Scholar
  51. Musto C, Lops P, Basile P, de Gemmis M, Semeraro G (2016a) Semantics-aware graph-based recommender systems exploiting linked open data. In: Vassileva J, Blustein J, Aroyo L, D’Mello SK (eds) Proceedings of the 2016 conference on user modeling adaptation and personalization, UMAP 2016, ACM, Halifax, 13–17 July 2016, pp 229–237Google Scholar
  52. Musto C, Narducci F, Lops P, de Gemmis M, G. Semeraro G (2016b) Explod: a framework for explaining recommendations based on the linked open data cloud. In: Proceedings of the 10th ACM conference on recommender systems, ACM, Boston, 15–19 Sept 2016, pp 151–154Google Scholar
  53. Oku K, Hattori F (2011) Fusion-based recommender system for improving serendipity. In: Proceedings of the ACM RecSys 2011 workshop on novelty and diversity in recommender systems (DiveRS), volume 816 of CEUR workshop proceedings, CEUR-WSorg, 2011. Aachen, Germany. pp 19–26
  54. Onuma K, Tong H, Faloutsos C (2009) TANGENT: a novel, ‘surprise me’, recommendation algorithm. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, 2009, pp 657–666Google Scholar
  55. Picard RW (1997) Affective computing. MIT Press, Cambridge, MACrossRefGoogle Scholar
  56. Picault J, Ribière M, Bonnefoy D, Mercer K (2011) How to get the recommender out of the lab? In: Recommender systems handbook. Springer, New York/London, pp 333–365Google Scholar
  57. Reisenzein R (1994) Pleasure-arousal theory and the intensity of emotions. J Pers Soc Psychol 67(3):525CrossRefGoogle Scholar
  58. Resnick P, Varian HR (1997) Recommender systems. Commun ACM 40(3):56–58CrossRefGoogle Scholar
  59. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported cooperative work, CSCW ‘94, ACM, New York, 1994, pp 175–186Google Scholar
  60. Ricci F, Rokach L, Shapira B, Kantor PB (2011) Recommender systems handbook. Springer, New York/LondonzbMATHCrossRefGoogle Scholar
  61. Ricci F, Rokach L, Shapira B (eds) (2015). Recommender systems handbook, 2nd edn. Springer USGoogle Scholar
  62. Rubens N, Elahi M, SugiyamaM, Kaplan D (2015) Active learning in recommender systems. In: Ricci F, Rokach L, Shapira B (eds) Recommender systems handbook. Springer US, pp 809–846CrossRefGoogle Scholar
  63. Said A, Bellog A (2014) Comparative recommender system evaluation: benchmarking recommendation frameworks. In: Proceedings of the 8th ACM conference on recommender systems, RecSys ‘14, ACM, New York, 2014, pp 129–136Google Scholar
  64. Sarwar B, Karypis G, Konstan J, Reidl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, ACM, New York, 2001, pp 285–295Google Scholar
  65. Shardanand U, Maes P (1995) Social information filtering: algorithms for automating “word of mouth”. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ‘95, ACM Press/Addison-Wesley Publishing Co., New York, 1995, pp 210–217Google Scholar
  66. Tkalčič M, Burnik U, Odić A, Košir A, Tasič J (2013) Emotion-aware recommender systems – a framework and a case study. In: ICT Innovations 2012. Springer, Berlin, Heidelberg. pp 141–150CrossRefGoogle Scholar
  67. Tkalčič M, Košir A, De Carolis B, de Gemmis M, Odić A (2016) Emotions and personality in personalized services: methods, evaluation and applications. Springer International Publishing SwitzerlandGoogle Scholar
  68. Vargas S, Castells P (2011) Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the ACM conference on recommender systems, RecSys 2011, ACM, 2011, New York, US. pp 109–116Google Scholar
  69. Woyke E (2011) Serendipitous shopping. Forbes MagazineGoogle Scholar
  70. Zhang YC, Séaghdha DÓ, Quercia D, Jambor T (2012) Auralist: introducing serendipity into music recommendation. In: Proceedings of the fifth international conference on web search and data mining, ACM, 2012. New York, US. pp 13–22Google Scholar
  71. Zheng Y, Mobasher B, Burke RD (2013) The role of emotions in context-aware recommendation. Decisions@ RecSys 2013:21–28Google Scholar
  72. Zheng Y, Mobasher B, Burke R (2016) Emotions in context-aware recommender systems. In: Emotions and personality in personalized services. Springer International Publishing Switzerland. pp 311–326Google Scholar

Recommended Reading

  1. Jannach D, Zanker M, Felfernig A, Friedrich G (2011) Recommender systems: an introduction. Cambridge University PressGoogle Scholar
  2. Ricci F, Rokach L, Shapira B (eds) (2015) Recommender systems handbook, 2nd edn. SpringerGoogle Scholar
  3. Tkalčič M, Košir A, De Carolis B, de Gemmis M, Odić A (eds) (2016) Emotions and personality in personalized services: methods, evaluation and applications. SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marco de Gemmis
    • 1
    Email author
  • Pasquale Lops
    • 1
  • Marco Polignano
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari Aldo MoroBariItaly

Section editors and affiliations

  • Giovanni Semeraro
    • 1
  • Cataldo Musto
    • 2
  1. 1.Department of Computer ScienceUniversity of Bari "Aldo Moro"BariItaly
  2. 2.BariItaly