Encyclopedia of AIDS

2018 Edition
| Editors: Thomas J. Hope, Douglas D. Richman, Mario Stevenson

Kaposi Sarcoma-Associated Herpesvirus (KSHV) or Human Herpesvirus 8 (HHV-8)

  • Blossom DamaniaEmail author
  • Dirk P. Dittmer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-7101-5_17

Definition

Kaposi sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is a virus that is associated with the original AIDS-defining tumor, Kaposi sarcoma (KS). This virus is necessary for the development of KS. Expression of the viral protein, LANA, represents the definitive diagnostic marker for KS. In addition to KS, KSHV is also associated with primary effusion lymphoma and a plasmablastic variant of multicentric Castleman disease.

KSHV is a double-stranded DNA virus. There exists no vaccine against this virus. Viral DNA replication is sensitive to ganciclovir. The virus establishes lifelong latency in the infected host.

Introduction

The development of Kaposi sarcoma (KS) is linked to infection with Kaposi sarcoma-associated herpesvirus (KSHV, also known as human herpesvirus 8). This association was established when Drs. Yuan Chang and Patrick Moore discovered viral DNA in KS biopsies, but not in the skin from healthy controls. KSHV is present in essentially every...

This is a preview of subscription content, log in to check access.

References

  1. Ablashi DV, Chatlynne LG, Whitman Jr JE, Cesarman E. Spectrum of Kaposi’s sarcoma-associated herpesvirus, or human herpesvirus 8, diseases. Clin Microbiol Rev. 2002;15:439–64.CrossRefGoogle Scholar
  2. Akula SM, Wang FZ, Vieira J, Chandran B. Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology. 2001;282:245–55.CrossRefGoogle Scholar
  3. Bagni R, Whitby D. Kaposi’s sarcoma-associated herpesvirus transmission and primary infection. Curr Opin HIV AIDS. 2009;4:22–6.CrossRefGoogle Scholar
  4. Ballestas ME, Kaye KM. The latency-associated nuclear antigen, a multifunctional protein central to Kaposi’s sarcoma-associated herpesvirus latency. Future Microbiol. 2011;6:1399–413.CrossRefGoogle Scholar
  5. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113:1213–24.CrossRefGoogle Scholar
  6. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.CrossRefGoogle Scholar
  7. Chandran B. Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol. 2010;84:2188–99.CrossRefGoogle Scholar
  8. Chang Y, Moore PS. Kaposi’s Sarcoma (KS)-associated herpesvirus and its role in KS. Infect Agents Dis. 1996;5:215–22.PubMedGoogle Scholar
  9. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.CrossRefGoogle Scholar
  10. Cullen BR. Herpesvirus microRNAs: phenotypes and functions. Curr Opin Virol. 2011;1:211–5.CrossRefGoogle Scholar
  11. Damania B. Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol. 2004;2:656–68.CrossRefGoogle Scholar
  12. Damania B, Pipas JM. DNA tumor viruses. New York: Springer; 2009.CrossRefGoogle Scholar
  13. Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G, Blauvelt A, Yarchoan R. Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood. 2001;97:3244–50.CrossRefGoogle Scholar
  14. Deng H, Liang Y, Sun R. Regulation of KSHV lytic gene expression. Curr Top Microbiol Immunol. 2007;312:157–83.PubMedGoogle Scholar
  15. Deng BI, O’Connor CM, Kedes DH, Zhou ZH. Cryo-electron tomography of Kaposis sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. J Struct Biol. 2008;161(3):419–27.CrossRefGoogle Scholar
  16. Dimaio TA, Lagunoff M. KSHV induction of angiogenic and lymphangiogenic phenotypes. Front Microbiol. 2012;3:102.CrossRefGoogle Scholar
  17. Dittmer DP. Restricted Kaposi’s sarcoma (KS) herpesvirus transcription in KS lesions from patients on successful antiretroviral therapy. MBio. 2011;2:e00138–00111.CrossRefGoogle Scholar
  18. Dittmer DP, Krown SE. Molecular basis for therapy of AIDS-defining cancers. New York: Springer; 2010.CrossRefGoogle Scholar
  19. Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest. 2010;120:939–49.CrossRefGoogle Scholar
  20. Hahn AS, Kaufmann JK, Wies E, Naschberger E, Panteleev-Ivlev J, Schmidt K, Holzer A, Schmidt M, Chen J, Konig S, Ensser A, Myoung J, Brockmeyer NH, Sturzl M, Fleckenstein B, Neipel F. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus. Nat Med. 2012;18:961–6.CrossRefGoogle Scholar
  21. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet. 2004;36:683–5.CrossRefGoogle Scholar
  22. Jacobs S, Damania B. The viral interferon regulatory factors of KSHV: immunosuppressors or oncogenes? Front Microbiol Immunol. 2011;2:19Google Scholar
  23. Jemal A, Bray F, Forman D, O’Brien M, Ferlay J, Center M, Parkin DM. Cancer burden in Africa and opportunities for prevention. Cancer. 2012;118:4372–84.CrossRefGoogle Scholar
  24. Krown SE, Lee JY, Dittmer DP. More on HIV-associated Kaposi’s sarcoma. N Engl J Med. 2008;358:535–6; author reply 536.CrossRefGoogle Scholar
  25. Lee HR, Lee S, Chaudhary PM, Gill P, Jung JU. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Future Microbiol. 2010;5:1349–65.CrossRefGoogle Scholar
  26. Mesri EA, Cesarman E, Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 2010;10:707–19.CrossRefGoogle Scholar
  27. Moore PS, Chang Y. Kaposi’s sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol. 2003;57:609–39.CrossRefGoogle Scholar
  28. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R. Clinical manifestations of Kaposi sarcoma herpesvirus lytic activation: Multicentric Castleman disease (KSHV-MCD) and the KSHV inflammatory cytokine syndrome. Front Microbiol. 2012;3:73.CrossRefGoogle Scholar
  29. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D. Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med. 1996;2:342–6.CrossRefGoogle Scholar
  30. Sin SH, Dittmer DP. Cytokine homologs of human gammaherpesviruses. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 2012;32:53–9.CrossRefGoogle Scholar
  31. Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol. 2010;64:123–41.CrossRefGoogle Scholar
  32. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood. 1995;86:1276–80.PubMedGoogle Scholar
  33. Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol. 2007;312:71–100.PubMedGoogle Scholar
  34. West JA, Gregory SM, Damania B. Toll-like receptor sensing of human herpesvirus infection. Front Cell Infect Microbiol. 2012;2:122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Program in Global Oncology, Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, Center for AIDS ResearchUniversity of North CarolinaChapel HillUSA