Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Spanning Trees with Low Average Stretch

  • Ittai AbrahamEmail author
  • Ofer Neiman
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_804

Years and Authors of Summarized Original Work

  • 2012; Abraham, Neiman

Problem Definition

Let G = ( V,  E) be an undirected graph, with nonnegative weights on the edges \(w : E \rightarrow \mathbb{R}_{+}\)

Keywords

Embedding Spanning tree Stretch 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abraham I, Bartal Y, Neiman O (2008) Nearly tight low stretch spanning trees. In: FOCS ’08: Proceedings of the 2008 49th annual IEEE symposium on foundations of computer science, Philadelphia. IEEE Computer Society, Washington, DC, pp 781–790CrossRefGoogle Scholar
  2. 2.
    Abraham I, Neiman O (2012) Using petal-decompositions to build a low stretch spanning tree. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing, STOC ’12, New York. ACM, pp 395–406Google Scholar
  3. 3.
    Alon N, Karp RM, Peleg D, West D (1995) A graph-theoretic game and its application to the k-server problem. SIAM J Comput 24(1):78–100MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bartal Y (1996) Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th annual symposium on foundations of computer science, Burlington. IEEE Computer Society, Washington, DC, pp 184–Google Scholar
  5. 5.
    Bartal Y (2004) Graph decomposition lemmas and their role in metric embedding methods. In: Albers S, Radzik T (eds) Proceedings of the 12th annual European symposium on algorithms – ESA 2004, Bergen, 14–17 Sept 2004. Volume 3221 of Lecture notes in computer science. Springer, pp 89–97Google Scholar
  6. 6.
    Christiano P, Kelner JA, Madry A, Spielman DA, Teng S-H (2011) Electrical flows, Laplacian systems, and faster approximation of maximum flow in undirected graphs. In: Proceedings of the 43rd annual ACM symposium on theory of computing, STOC ’11, San Jose. ACM, New York, pp 273–282CrossRefGoogle Scholar
  7. 7.
    Elkin M, Emek Y, Spielman DA, Teng S-H (2005) Lower-stretch spanning trees. In: Proceedings of the thirty-seventh annual ACM symposium on theory of computing, STOC ’05, Baltimore. ACM, New York, pp 494–503CrossRefGoogle Scholar
  8. 8.
    Fakcharoenphol J, Rao S, Talwar K (2003) A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing, STOC ’03, San Diego. ACM, New York, pp 448–455CrossRefGoogle Scholar
  9. 9.
    Koutis I, Miller GL, Peng R (2010) Approaching optimality for solving SDD linear systems. In: 51th annual IEEE symposium on foundations of computer science, 23–26 Oct 2010, Las Vegas, pp 235–244Google Scholar
  10. 10.
    Koutis I, Miller GL, Peng R (2011) A nearly \(O(m\log n)\) time solver for SDD linear systems. In: 52th annual IEEE symposium on foundations of computer science, Palm SpringsGoogle Scholar
  11. 11.
    Spielman DA, Srivastava N (2008) Graph sparsification by effective resistances. In: Proceedings of the 40th annual ACM symposium on theory of computing, STOC ’08, Victoria. ACM, New York, pp 563–568Google Scholar
  12. 12.
    Spielman DA, Teng S-H (2004) Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the thirty-sixth annual ACM symposium on theory of computing, STOC ’04, Chicago. ACM, New York, pp 81–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Microsoft ResearchSilicon Valley, Palo AltoUSA
  2. 2.Department of Computer ScienceBen-Gurion University of the NegevBeer ShevaIsrael