Skip to main content

Sliding Window Algorithms

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Aggarwal C (2007) Data streams: models and algorithms. Advances in database systems. http://www.springer.com/west/home/default?SGWID=4-40356-22-107949228-0

  2. Arasu A, Manku GS (2004) Approximate counts and quantiles over sliding windows. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’04). ACM, New York, pp 286–296. doi:10.1145/1055558.1055598

    Chapter  Google Scholar 

  3. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’02). ACM, New York, pp 1–16. doi:10.1145/543613.543615

    Chapter  Google Scholar 

  4. Babcock B, Datar M, Motwani R (2002) Sampling from a moving window over streaming data. In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms (SODA’02). Society for Industrial and Applied Mathematics, Philadelphia, pp 633–634. http://dl.acm.org/citation.cfm?id=545381.545465

  5. Babcock B, Datar M, Motwani R, O’Callaghan L (2003) Maintaining variance and k-medians over data stream windows. In: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’03). ACM, New York, pp 234–243. doi:10.1145/773153.773176

    Chapter  Google Scholar 

  6. Braverman V, Ostrovsky R (2007) Smooth histograms for sliding windows. In: Proceedings of the 48th annual IEEE symposium on foundations of computer science (FOCS’07). IEEE Computer Society, Washington, DC, pp 283–293. doi:10.1109/FOCS.2007.63

    Chapter  Google Scholar 

  7. Braverman V, Ostrovsky R (2010) Effective computations on sliding windows. SIAM J Comput 39(6):2113–2131. doi:10.1137/090749281

    Article  MathSciNet  MATH  Google Scholar 

  8. Braverman V, Ostrovsky R (2010) Zero-one frequency laws. In: Proceedings of the 42nd ACM symposium on theory of computing (STOC’10). ACM, New York, pp 281–290. doi:10.1145/1806689.1806729

    Chapter  Google Scholar 

  9. Braverman V, Ostrovsky R, Zaniolo C (2009) Optimal sampling from sliding windows. In: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS’09). ACM, New York, pp 147–156. doi:10.1145/1559795.1559818

    Chapter  Google Scholar 

  10. Braverman V, Ostrovsky R, Zaniolo C (2012) Optimal sampling from sliding windows. J Comput Syst Sci 78(1):260–272. doi:10.1016/j.jcss.2011.04.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Braverman V, Gelles R, Ostrovsky R (2013) How to catch l 2-heavy-hitters on sliding windows. In: Du DZ, Zhang G (eds) Computing and combinatorics. Lecture notes in computer science, vol 7936. Springer, Berlin/Heidelberg, pp 638–650. doi:10.1007/978-3-642-38768-5_56

    Chapter  Google Scholar 

  12. Braverman V, Katzman J, Seidell C, Vorsanger G (2014) An optimal algorithm for large frequency moments using \(\text{O}(n^{1-2/k})\) bits. In: Proceedings of the 18th international workshop on randomization and computation (RANDOM’2014)

    Google Scholar 

  13. Braverman V, Ostrovsky R, Roytman A (2014) Universal Streaming. ArXiv e-prints 1408.2604

    Google Scholar 

  14. Chen K (2009) On coresets for $k$-median and $k$-means clustering in metric and euclidean spaces and their applications. SIAM J Comput 39(3):923–947. doi:http://dx.doi.org/10.1137/070699007

    Google Scholar 

  15. Chi Y, Wang H, Yu PS, Muntz RR (2004) Moment: Maintaining closed frequent itemsets over a stream sliding window. In: ICDM, pp 59–66

    Google Scholar 

  16. Cormode G, Yi K (2012) Tracking distributed aggregates over time-based sliding windows. In: Proceedings of the 24th international conference on scientific and statistical database management (SSDBM’12). Springer, Berlin/Heidelberg, pp 416–430. doi:10.1007/978-3-642-31235-9_28

    Google Scholar 

  17. Crouch MS, McGregor A, Stubbs D (2013) Dynamic graphs in the sliding-window model. In: ESA, pp 337–348

    MATH  Google Scholar 

  18. Dang XH, Lee VC, Ng WK, Ong KL (2009) Incremental and adaptive clustering stream data over sliding window. In: Proceedings of the 20th international conference on database and expert systems applications (DEXA’09). Springer, Berlin/Heidelberg, pp 660–674. doi:10.1007/978-3-642-03573-9_55

    Chapter  Google Scholar 

  19. Datar M, Muthukrishnan MS (2002) Estimating rarity and similarity over data stream windows. In: Proceedings of the 10th annual European symposium on algorithms (ESA’02). Springer, London, pp 323–334. http://dl.acm.org/citation.cfm?id=647912.740833

  20. Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows. SIAM J Comput 31(6):1794–1813

    Article  MathSciNet  MATH  Google Scholar 

  21. Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream statistics over sliding windows: (extended abstract). In: Proceedings of the thirteenth annual ACM-SIAM symposium on discrete algorithms (SODA’02). Society for Industrial and Applied Mathematics, Philadelphia, pp 635–644. http://dl.acm.org/citation.cfm?id=545381.545466

  22. Feigenbaum J, Kannan S, Zhang J (2004) Computing diameter in the streaming and sliding-window models. Algorithmica 41(1):25–41

    Article  MathSciNet  MATH  Google Scholar 

  23. Feigenbaum J, Kannan S, Zhang J (2005) Computing diameter in the streaming and sliding-window models. Algorithmica 41:25–41

    Article  MathSciNet  MATH  Google Scholar 

  24. Gibbons PB, Tirthapura S (2002) Distributed streams algorithms for sliding windows. In: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures (SPAA’02). ACM, New York, pp 63–72. doi:10.1145/564870.564880

    Google Scholar 

  25. Golab L, Özsu MT (2003) Processing sliding window multi-joins in continuous queries over data streams. In: Proceedings of the 29th international conference on Very large data bases (VLDB’03), vol 29. VLDB Endowment, pp 500–511. http://dl.acm.org/citation.cfm?id=1315451.1315495

  26. Golab L, DeHaan D, Demaine ED, Lopez-Ortiz A, Munro JI (2003) Identifying frequent items in sliding windows over on-line packet streams. In: Proceedings of the 3rd ACM SIGCOMM conference on internet measurement (IMC’03). ACM, New York, pp 173–178. doi:10.1145/948205.948227

    Google Scholar 

  27. Kane DM, Nelson J, Woodruff DP (2010) On the exact space complexity of sketching and streaming small norms. In: Proceedings of the 21st annual ACM-SIAM symposium on discrete algorithms (SODA’10)

    Google Scholar 

  28. Kane DM, Nelson J, Woodruff DP (2010) An optimal algorithm for the distinct elements problem. In: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’10). ACM, New York, pp 41–52. doi:10.1145/1807085.1807094

    Chapter  Google Scholar 

  29. Lee LK, Ting HF (2006) Maintaining significant stream statistics over sliding windows. In: SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. ACM, New York, pp 724–732. doi:http://doi.acm.org/10.1145/1109557.1109636

    Google Scholar 

  30. Lee LK, Ting HF (2006) A simpler and more efficient deterministic scheme for finding frequent items over sliding windows. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’06). ACM, New York, pp 290–297. doi:http://doi.acm.org/10.1145/1142351.1142393

    Google Scholar 

  31. Li J, Maier D, Tufte K, Papadimos V, Tucker PA (2005) No pane, no gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Rec 34(1):39–44. doi:10.1145/1058150.1058158

    Article  Google Scholar 

  32. McGregor A (2014) Graph stream algorithms: A survey. SIGMOD Rec 43(1):9–20. doi:10.1145/2627692.2627694

    Article  Google Scholar 

  33. Ren J, Ma R, Ren J (2009) Density-based data streams clustering over sliding windows. In: Proceedings of the 6th international conference on Fuzzy systems and knowledge discovery (FSKD’09), vol 5. IEEE Press, Piscataway, pp 248–252. http://dl.acm.org/citation.cfm?id=1801874.1801929

  34. Sohler C (2006) List of open problems in sublinear algorithms: problem 20. http://sublinear.info/20

  35. Tatbul N, Zdonik S (2006) Window-aware load shedding for aggregation queries over data streams. In: Proceedings of the 32nd international conference on very large data bases (VLDB’06). VLDB Endowment, pp 799–810. http://dl.acm.org/citation.cfm?id=1182635.1164196

  36. Zhang L, Li Z, Yu M, Wang Y, Jiang Y (2005) Random sampling algorithms for sliding windows over data streams. In: Proceedings of the 11th joint international computer conference, pp 572–575

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the National Science Foundation under Grant No. 1447639.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Braverman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Braverman, V. (2016). Sliding Window Algorithms. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_797

Download citation

Publish with us

Policies and ethics