Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

List Ranking

  • Riko Jacob
  • Ulrich Meyer
  • Laura Toma
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_592

Years and Authors of Summarized Original Work

  • 1995; Chiang, Goodrich, Grove, Tamassia, Vengroff, Vitter

Problem Definition

Let L be a linked list of n vertices x1, x2, , xn such that every vertex xi stores a pointer \(succ(x_{i})\)

Keywords

3-coloring Euler Tour External memory algorithms Graph algorithms Independent set PRAM algorithms Time-forward processing 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ajwani D, Meyer U (2009) Design and engineering of external memory traversal algorithms for general graphs. In: Lerner J, Wagner D, Zweig KA (eds) Algorithmics of large and complex networks. Springer, Berlin/Heidelberg, pp 1–33CrossRefGoogle Scholar
  2. 2.
    Arge L, Goodrich M, Nelson M, Sitchinava N (2008) Fundamental parallel algorithms for private-cache chip multiprocessors. In: SPAA 2008, pp 197–206Google Scholar
  3. 3.
    Arge L, Goodrich M, Sitchinava N (2010) Parallel external memory graph algorithms. In: IPDPS. IEEE, pp 1–11. http://dx.doi.org/10.1109/IPDPS.2010.5470440
  4. 4.
    Chiang Y, Goodrich M, Grove E, Tamassia R, Vengroff D, Vitter J (1995) External memory graph algorithms. In: Proceedings of the 6th annual symposium on discrete algorithms (SODA), San Francisco, pp 139–149Google Scholar
  5. 5.
    Cole R, Vishkin U (1986) Deterministic coin tossing with applications to optimal parallel list ranking. Inf Control 70(1):32–53MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dementiev R, Kettner L, Sanders P (2008) STXXL: standard template library for XXL data sets. Software: Pract Exp 38(6):589–637Google Scholar
  7. 7.
    Greiner G (2012) Sparse matrix computations and their I/O complexity. Dissertation, Technische Universität München, München. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20121123-1113167-0-6
  8. 8.
    Jacob R, Lieber T, Sitchinava N (2014) On the complexity of list ranking in the parallel external memory model. In: Proceedings 39th international symposium on mathematical foundations of computer science (MFCS’14), Budapest. LNCS, vol 8635. Springer, pp 384–395Google Scholar
  9. 9.
    JáJá J (1992) An introduction to parallel algorithms. Addison-Wesley, ReadingMATHGoogle Scholar
  10. 10.
    Sibeyn J (2004) External connected components. In: Proceedings of the 9th Scandinavian workshop on algorithm theory (SWAT), Lecture Notes in Computer Science, vol 3111. Humlebaek, pp 468–479. http://link.springer.com/chapter/10.1007/978-3-540-27810-8_40
  11. 11.
    Zeh N (2002) I/O-efficient algorithms for shortest path related problems. Phd thesis, School of Computer Science, Carleton UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Computer Science, Technical University of MunichMunichGermany
  2. 2.IT University of CopenhagenCopenhagenDenmark
  3. 3.Department of Computer Science, Goethe University Fankfurt am MainFrankfurtGermany
  4. 4.Department of Computer Science, Bowdoin CollegeBrunswickUSA