Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Hub Labeling (2-Hop Labeling)

  • Daniel Delling
  • Andrew V. Goldberg
  • Renato F. Werneck
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_580

Years and Authors of Summarized Original Work

  • 2003; Cohen, Halperin, Kaplan, Zwick

  • 2012; Abraham, Delling, Goldberg, Werneck

  • 2013; Akiba, Iwata, Yoshida

  • 2014; Delling, Goldberg, Pajor, Werneck

  • 2014; Delling, Goldberg, Savchenko, Werneck

Problem Definition

Given a directed graph G = (V, A) (with n =| V | and m =| A | ) with a length function : AR+ and a pair of vertices s, t, a distance oracle returns the distance dist(s, t) from s to t. A labeling algorithm [18] implements distance oracles in two stages. The preprocessing stage computes a label for each vertex of the input graph. Then, given s and t, the query stage computes dist(s, t) using only the labels of s and t; the query does not explicitly use G and .

Hub labeling (HL) (or 2-hop labeling) is a special kind of labeling algorithm. The label L( v) of a vertex v consists of two parts: the forward label L f( v) is a collection of vertices w with their distances dist( v, w) from v, while the backward label L b( v) is a collection...

Keywords

Distance oracles Labeling algorithms Shortest paths 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abraham I, Fiat A, Goldberg AV, Werneck RF (2010) Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of 21st ACM-SIAM symposium on discrete algorithms, Austin, pp 782–793Google Scholar
  2. 2.
    Abraham I, Delling D, Goldberg AV, Werneck RF (2011) A hub-based labeling algorithm for shortest paths on road networks. In: Proceedings of the 10th international symposium on experimental algorithms (SEA’11), Chania. Volume 6630 of Lecture notes in computer science. Springer, pp 230–241Google Scholar
  3. 3.
    Abraham I, Delling D, Fiat A, Goldberg AV, Werneck RF (2012) HLDB: location-based services in databases. In: Proceedings of the 20th ACM SIGSPATIAL international symposium on advances in geographic information systems (GIS’12), Redondo Beach. ACM, pp 339–348Google Scholar
  4. 4.
    Abraham I, Delling D, Goldberg AV, Werneck RF (2012) Hierarchical hub labelings for shortest paths. In: Proceedings of the 20th annual European symposium on algorithms (ESA’12), Ljubljana. Volume 7501 of Lecture notes in computer science. Springer, pp 24–35Google Scholar
  5. 5.
    Akiba T, Iwata Y, Yoshida Y (2013) Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD’13, New York. ACM, pp 349–360CrossRefGoogle Scholar
  6. 6.
    Babenko M, Goldberg AV, Gupta A, Nagarajan V (2013) Algorithms for hub label optimization. In: Fomin FV, Freivalds R, Kwiatkowska M, Peleg D (eds) Proceedings of 30th ICALP, Riga. Lecture notes in computer science, vol 7965. Springer, pp 69–80Google Scholar
  7. 7.
    Bast H, Delling D, Goldberg AV, Müller–Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2014) Route planning in transportation networks. Technical report MSR-TR-2014-4, Microsoft researchGoogle Scholar
  8. 8.
    Chvátal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3): 233–235MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reachability and distance queries via 2-hop labels. SIAM J Comput 32:1338–1355MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Delling D, Goldberg AV, Werneck RF (2013) Hub label compression. In: Proceedings of the 12th international symposium on experimental algorithms (SEA’13), Rome. Volume 7933 of Lecture notes in computer science. Springer, pp 18–29Google Scholar
  11. 11.
    Delling D, Goldberg AV, Savchenko R, Werneck RF (2014) Hub labels: theory and practice. In: Proceedings of the 13th international symposium on experimental algorithms (SEA’14), Copenhagen. Lecture notes in computer science. SpringerGoogle Scholar
  12. 12.
    Delling D, Goldberg AV, Pajor T, Werneck RF (2014, to appear) Robust distance queries on massive networks. In: Proceedings of the 22nd annual European symposium on algorithms (ESA’14), Wroclaw. Lecture notes in computer science. SpringerGoogle Scholar
  13. 13.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1: 269–271MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric maximum flow algorithm and applications. SIAM J Comput 18:30–55MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gavoille C, Peleg D, Pérennes S, Raz R (2004) Distance labeling in graphs. J Algorithms 53(1): 85–112MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Geisberger R, Sanders P, Schultes D, Vetter C (2012) Exact routing in large road networks using contraction hierarchies. Transp Sci 46(3):388–404CrossRefGoogle Scholar
  17. 17.
    Kortsarz G, Peleg D (1994) Generating sparse 2-spanners. J Algorithms 17:222–236MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Peleg D (2000) Proximity-preserving labeling schemes. J Graph Theory 33(3):167–176MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sanders P, Transier F (2007) Intersection in integer inverted indices. SIAM, Philadelphia, pp 71–83Google Scholar
  20. 20.
    Schenkel R, Theobald A, Weikum G (2004) HOPI: an efficient connection index for complex XML document collections. In: Advances in database technology – EDBT 2004. Springer, Berlin/Heidelberg, pp 237–255CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 2
  • Renato F. Werneck
    • 3
  1. 1.MicrosoftSilicon ValleyUSA
  2. 2.Microsoft Research – Silicon ValleyMountain ViewUSA
  3. 3.Microsoft Research Silicon ValleyLa AvenidaUSA