Encyclopedia of Algorithms

2016 Edition
| Editors: Ming-Yang Kao

Approximate String Matching

  • Gonzalo NavarroEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2864-4_363

Years and Authors of Summarized Original Work

  • 1980; Sellers

  • 1989; Landau, Vishkin

  • 1999; Myers

  • 2003; Crochemore, Landau, Ziv-Ukelson

  • 2004; Fredriksson, Navarro

Problem Definition

Given a text string T = t1t2… tn and a pattern string P = p1p2… pm, both being sequences over an alphabet \(\Sigma \)


Inexact string matching Semiglobal or semilocal sequence similarity String matching allowing errors or differences 
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Amir A, Lewenstein M, Porat E (2004) Faster algorithms for string matching with k mismatches. J Algorithms 50(2):257–275MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baeza-Yates R, Navarro G (1999) Faster approximate string matching. Algorithmica 23(2):127–158MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chang W, Marr T (1994) Approximate string matching and local similarity. In: Proceedings of the 5th annual symposium on combinatorial pattern matching (CPM’94), Asilomar. LNCS, vol 807. Springer, Berlin, pp 259–273Google Scholar
  4. 4.
    Cole R, Hariharan R (2002) Approximate string matching: a simpler faster algorithm. SIAM J Comput 31(6):1761–1782MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Crochemore M, Landau G, Ziv-Ukelson M (2003) A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J Comput 32(6):1654–1673MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fredriksson K, Navarro G (2004) Average-optimal single and multiple approximate string matching. ACM J Exp Algorithms 9(1.4)Google Scholar
  7. 7.
    Gusfield D (1997) Algorithms on strings, trees and sequences. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  8. 8.
    Landau G, Vishkin U (1989) Fast parallel and serial approximate string matching. J Algorithms 10:157–169MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Masek W, Paterson M (1980) A faster algorithm for computing string edit distances. J Comput Syst Sci 20:18–31MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Myers G (1999) A fast bit-vector algorithm for approximate string matching based on dynamic progamming. J ACM 46(3):395–415MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88CrossRefGoogle Scholar
  12. 12.
    Navarro G, Baeza-Yates R (1999) Very fast and simple approximate string matching. Inf Proc Lett 72:65–70MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sellers P (1980) The theory and computation of evolutionary distances: pattern recognition. J Algorithms 1:359–373MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ukkonen E (1985) Finding approximate patterns in strings. J Algorithms 6:132–137MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yao A (1979) The complexity of pattern matching for a random string. SIAM J Comput 8:368–387MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ChileSantiagoChile