Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Bioethanol from Lignocellulosic Biomass

  • Charles E. Wyman
  • Charles M. Cai
  • Rajeev Kumar
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_521-3



Plant matter of recent (nongeologic) origin.


One or more enzymes that catalyze the reaction of water with cellulose to release shorter glucose oligomers and ultimately monomeric glucose sugar.


A glucose polymer composed of up to about 15,000 glucose molecules covalently joined by β 1–4 linkages in long, straight chains that can hydrogen bond with parallel cellulose chains to form crystalline regions. About 35–50% of the structural portion of plants is cellulose.

Cellulosic biomass

Also known as lignocellulosic biomass, the structural part of plants that is not edible by humans and contains cellulose, hemicellulose, pectin, and lignin. Examples include grass, wood, and agricultural and forestry residues.

Cellulosic ethanol

Ethanol made from lignocellulosic biomass by biological, chemical, or chemo-biological processes.


Proteins produced by living cells or organisms that are able to catalyze chemical reactions in organic substances.



This is a preview of subscription content, log in to check access.



We are grateful for funding by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304). We also acknowledge the Ford Motor Company for funding the Chair in Environmental Engineering that facilitates projects such as this one and the Center for Environmental Research and Technology (CE-386 CERT) of the Bourns College of Engineering for providing facilities.


  1. 1.
    Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRefGoogle Scholar
  2. 2.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  3. 3.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792CrossRefGoogle Scholar
  4. 4.
    Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Marcel Dekker, Inc., 995–1033Google Scholar
  5. 5.
    Viëtor RJ, Newman RH, Ha M-A, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731CrossRefGoogle Scholar
  6. 6.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  7. 7.
    Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611–612CrossRefGoogle Scholar
  8. 8.
    Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefGoogle Scholar
  9. 9.
    Maxim S, Rajeev K, Haitao Z, Steven H (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2:59–70CrossRefGoogle Scholar
  10. 10.
    Davison BH, Parks J, Davis MF, Donohoe BS (2013) Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Hoboken, New Jersey, pp 23–38Google Scholar
  11. 11.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709CrossRefGoogle Scholar
  12. 12.
    Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46:2091–2110CrossRefGoogle Scholar
  13. 13.
    Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRefGoogle Scholar
  14. 14.
    Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176CrossRefGoogle Scholar
  15. 15.
    Saeman JF (1949) Kinetics of wood hydrolysis and the decomposition of sugars in dilute acids at high temperatures. Holzforschung 4:1–14CrossRefGoogle Scholar
  16. 16.
    Saeman JF (1945) Kinetics of wood saccharification – hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52CrossRefGoogle Scholar
  17. 17.
    Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohydr Polym 92:334–344CrossRefGoogle Scholar
  18. 18.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRefGoogle Scholar
  19. 19.
    Wyman CE, Dale BE (2015) Producing biofuels via the sugar platform. Chem Eng Prog 111:45–51Google Scholar
  20. 20.
    Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res J 3:347–356CrossRefGoogle Scholar
  21. 21.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRefGoogle Scholar
  22. 22.
    So KS, Brown RC (1999) Economic analysis of selected lignocellulose-to-ethanol conversion technologies. Appl Biochem Biotechnol 77–9:633–640CrossRefGoogle Scholar
  23. 23.
    Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102CrossRefGoogle Scholar
  24. 24.
    Brown TR, Brown RC (2013) A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels Bioprod Biorefin 7:235–245CrossRefGoogle Scholar
  25. 25.
    Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810CrossRefGoogle Scholar
  26. 26.
    Grohmann K, Wyman CE, Himmel ME (1992) Potential for fuels from biomass and wastes. ACS Symp Ser 476:354–392CrossRefGoogle Scholar
  27. 27.
    Wiselogel A, Kistner J, Althoff K (2008) Analysis of the US Fuel Ethanol Industry and Market Expectations. Clean Technology and Sustainable Industries Conference and Trade Show. Boston, MA. Smart Grid, Storage, and Water, pp 16–18Google Scholar
  28. 28.
    Narula CK, Li Z, Casbeer EM, Geiger RA, Moses-Debusk M, Keller M et al (2015) Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci Rep 5:16039CrossRefGoogle Scholar
  29. 29.
    Saha SK, Sivasanker S (1992) The conversion of ethanol to hydrocarbons over Zsm-5. Ind J Technol 30:71–76Google Scholar
  30. 30.
    Chum HL, Warner E, Seabra JEA, Macedo IC (2014) A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuels Bioprod Biorefin 8:205–223CrossRefGoogle Scholar
  31. 31.
    Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580CrossRefGoogle Scholar
  32. 32.
    Charles D (2009) Corn-based ethanol flunks key test. Science 324:587CrossRefGoogle Scholar
  33. 33.
    Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244CrossRefGoogle Scholar
  34. 34.
    Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G et al (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203CrossRefGoogle Scholar
  35. 35.
    Wyman CE (1994) Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl Biochem Biotechnol 45–6:897–915CrossRefGoogle Scholar
  36. 36.
    Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L et al (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325:270–271CrossRefGoogle Scholar
  37. 37.
    Lynd L, Greene N, Dale B, Laser M, Lashof D, Wang M et al (2006) Energy returns on ethanol production. Science (New York, NY) 312:1746–1748CrossRefGoogle Scholar
  38. 38.
    Wyman CE, Goodman BJ (1994) Economic fundamentals of ethanol production from lignocellulosic biomass. Abstr Pap Am Chem Soc 207:174-BTECGoogle Scholar
  39. 39.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  40. 40.
    Langholtz MH, Stokes BJ, Eaton LM (2016) Billion-ton report: Advancing domestic resources for a thriving bioeconomy, Volume 1: Economic availability of feedstock. Oak Ridge National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy 2016:1–411Google Scholar
  41. 41.
    Perlack RD, Stokes BJ (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, p 227Google Scholar
  42. 42.
    Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176CrossRefGoogle Scholar
  43. 43.
    Jae J, Tompsett GA, Lin Y-C, Carlson TR, Shen J, Zhang T et al (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3Google Scholar
  44. 44.
    Wyman CE, Ragauskas AJ (2015) Lignin bioproducts to enable biofuels. Biofuels Bioprod Biorefin 9:447–449CrossRefGoogle Scholar
  45. 45.
    Tian X, Fang Z, Smith RL, Wu Z, Liu M (2016) Properties, chemical characteristics and application of lignin and its derivatives. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 3–33CrossRefGoogle Scholar
  46. 46.
    Lipinsky ES (1981) Chemicals from biomass – petrochemical substitution options. Science 212:1465–1471CrossRefGoogle Scholar
  47. 47.
    Lipinsky ES (1978) Fuels from biomass – integration with food and materials systems. Science 199:644–651CrossRefGoogle Scholar
  48. 48.
    Wyman CE (1995). Biomass-derived oxygenates for transportation fuels. Proceedings – biomass conference of the Americas: energy, environment, agriculture and industry, 2nd, Portland, 21–24 Aug 1995, pp 966–975Google Scholar
  49. 49.
    Fulton LM, Lynd LR, Körner A, Greene N, Tonachel LR (2015) The need for biofuels as part of a low carbon energy future. Biofuels Bioprod Biorefin 9:476CrossRefGoogle Scholar
  50. 50.
    Fatehi P, Chen J (2016) Extraction of technical lignins from pulping spent liquors, challenges and opportunities. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 35–54CrossRefGoogle Scholar
  51. 51.
    Thies MC, Klett AS (2016) Recovery of low-ash and ultrapure lignins from alkaline liquor by-product streams. In: Fang Z, Smith JLR (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 55–78CrossRefGoogle Scholar
  52. 52.
    Laser M, Lynd LR (2014) Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries. Proc Natl Acad Sci 111:3360–3364Google Scholar
  53. 53.
    Lynd LR, Larson E, Greene N, Laser M, Sheehan J, Dale BE et al (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefin 3:113–123CrossRefGoogle Scholar
  54. 54.
    Wyman C, Hinman N (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753CrossRefGoogle Scholar
  55. 55.
    Durbin TD, Karavalakis G, Johnson KC (2016) Environmental and performance impacts of alternative fuels in transportation applications. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 339–445Google Scholar
  56. 56.
    Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F et al (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed 49:3572–3597CrossRefGoogle Scholar
  57. 57.
    Wyman CE, Hinman ND, Bain RL, Stevens DJ (1992) Ethanol and methanol from cellulosic biomass. In: Williams RH, Johansson TB, Kelly H, Reddy AKN (eds) Fuels and electricity from renewable resources. Island Press, Washington, DC, pp 865–924Google Scholar
  58. 58.
    Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T et al (2017) Cellulosic ethanol: status and innovation. Curr Opin Biotechnol 45:202–211CrossRefGoogle Scholar
  59. 59.
    Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2010) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:1–25Google Scholar
  60. 60.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefGoogle Scholar
  61. 61.
    Karimi K, Shafiei M, Kumar R (2013) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies. Springer, Berlin/Heidelberg, pp 53–96CrossRefGoogle Scholar
  62. 62.
    Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefGoogle Scholar
  63. 63.
    Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  64. 64.
    Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060CrossRefGoogle Scholar
  65. 65.
    Atalla RH, Brady JW, Matthews JF, Ding S-Y, Himmel ME (2008) Structures of plant cell wall celluloses. Biomass recalcitrance. Blackwell, London, pp 188–212CrossRefGoogle Scholar
  66. 66.
    Timell TE (1964) Wood hemicelluloses: part I. In: Melville LW (ed) Advances in carbohydrate chemistry. Academic Press, New York, pp 247–302Google Scholar
  67. 67.
    Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefGoogle Scholar
  68. 68.
    Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. Biomass recalcitrance. Blackwell, London, pp 94–187Google Scholar
  69. 69.
    Lacayo CI, Hwang MS, Ding S-Y, Thelen MP (2013) Lignin depletion enhances the digestibility of cellulose in cultured xylem cells. PLoS One 8:e68266CrossRefGoogle Scholar
  70. 70.
    Zeng Y, Zhao S, Yang S, Ding S-Y (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45CrossRefGoogle Scholar
  71. 71.
    Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182CrossRefGoogle Scholar
  72. 72.
    Kumar R, Wyman CE (2008) The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydr Res 343:290–300CrossRefGoogle Scholar
  73. 73.
    Gao X, Kumar R, Wyman CE (2014) Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol Bioeng 111:1088–1096CrossRefGoogle Scholar
  74. 74.
    Hespell RB, O’Bryan PJ, Moniruzzaman M, Bothast RJ (1997) Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Appl Biochem Biotechnol 62:87–97CrossRefGoogle Scholar
  75. 75.
    Dien BS, Ximenes EA, O’Bryan PJ, Moniruzzaman M, Li X-L, Balan V et al (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour Technol 99:5216–5225CrossRefGoogle Scholar
  76. 76.
    Spindler D, Wyman C, Mohagheghi A, Grohmann K (1988) Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Biochem Biotechnol 17:279–293CrossRefGoogle Scholar
  77. 77.
    Spindler DD, Wyman CE, Grohmann K, Mohagheghi A (1989) Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and beta -glucosidase supplementation. Appl Biochem Biotechnol 20–21:529–540CrossRefGoogle Scholar
  78. 78.
    Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in escherichia coli. Appl Environ Microbiol 53:2420–2425Google Scholar
  79. 79.
    Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose and xylose by recombinant escherichia coli. Appl Microbiol Biotechnol 55:1943–1948Google Scholar
  80. 80.
    Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859Google Scholar
  81. 81.
    Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875CrossRefGoogle Scholar
  82. 82.
    Zhang X, Athmanathan A, Mosier NS (2016) Biochemical conversion of biomass to biofuels. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York, pp 79–141Google Scholar
  83. 83.
    Sun Q, Khunsupat R, Akato K, Tao J, Labbe N, Gallego NC et al (2016) A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem 18:5015–5024Google Scholar
  84. 84.
    Cai CM (2014) Co-solvent enhanced production of platform fuel precursors from lignocellulosic biomass [PhD]. UC Riverside, RiversideGoogle Scholar
  85. 85.
    Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. ACS Symp Ser 666:46–56CrossRefGoogle Scholar
  86. 86.
    Horn S, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRefGoogle Scholar
  87. 87.
    Kumar R, Wyman CE (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol Bioeng 102:457–467CrossRefGoogle Scholar
  88. 88.
    Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557CrossRefGoogle Scholar
  89. 89.
    Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726CrossRefGoogle Scholar
  90. 90.
    Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE et al (2001) Fingerprinting trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol 91–93:99–107CrossRefGoogle Scholar
  91. 91.
    Chundawat SPS, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V et al (2011) Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures. J Proteome Res 10:4365–4372CrossRefGoogle Scholar
  92. 92.
    Jeoh T, Michener W, Himmel M, Decker S, Adney W (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:10CrossRefGoogle Scholar
  93. 93.
    Stahlberg J, Johansson G, Pettersson G (1991) A new model for enzymatic hydrolysis of cellulose based on the two-domain structure of cellobiohydrolase I. Nat Biotechnol 9:286–290CrossRefGoogle Scholar
  94. 94.
    Stahlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113CrossRefGoogle Scholar
  95. 95.
    Gusakov AV, Sinitsyn AP, Gerasimas VB, Savitskene RY, Steponavichus YY (1985) A product inhibition study of cellulases from trichoderma longibrachiatum using dyed cellulose. J Biotechnol 3:167–174CrossRefGoogle Scholar
  96. 96.
    Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287CrossRefGoogle Scholar
  97. 97.
    Gong C-S, Ladisch MR, Tsao GT (1977) Cellobiase from trichoderma iride: purification, properties, kinetics, and mechanism. Biotechnol Bioeng 19:959–981CrossRefGoogle Scholar
  98. 98.
    Hong J, Ladisch MR, Gong CS, Wankat PC, Tsao GT (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23:2779–2788CrossRefGoogle Scholar
  99. 99.
    Kumar R, Wyman CE (2008) An improved method to directly estimate cellulase adsorption on biomass solids. Enzym Microb Technol 42:426–433CrossRefGoogle Scholar
  100. 100.
    Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol Prog 20:698–705CrossRefGoogle Scholar
  101. 101.
    Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen J-CN, Johansen KS et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci 108:15079–15084CrossRefGoogle Scholar
  102. 102.
    Hu J, Arantes V, Pribowo A, Gourlay K, Saddler JN (2014) Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energy Environ Sci 7:2308–2315CrossRefGoogle Scholar
  103. 103.
    Hu J, Chandra R, Arantes V, Gourlay K, Susan van Dyk J, Saddler JN (2015) The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol 186:149–153CrossRefGoogle Scholar
  104. 104.
    Jeoh T, Wilson DB, Walker LP (2006) Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–277CrossRefGoogle Scholar
  105. 105.
    Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4:567–569CrossRefGoogle Scholar
  106. 106.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  107. 107.
    Viikari L, Tenkanen M, Poutanen K (1999) Hemicellulases. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, Chichester, pp 1383–1391Google Scholar
  108. 108.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRefGoogle Scholar
  109. 109.
    Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, Switzerland, pp 85–154Google Scholar
  110. 110.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  111. 111.
    Gruno M, Valjamae P, Pettersson G, Johansson G (2004) Inhibition of the trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng 86:503–511CrossRefGoogle Scholar
  112. 112.
    Podkaminer K, Kenealy W, Herring C, Hogsett D, Lynd L (2012) Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF). Biotechnol Biofuels 5:43CrossRefGoogle Scholar
  113. 113.
    Wyman CE, Spindler DD, Grohmann K, Lastick SM (1986) Simultaneous saccharification and fermentation of cellulose with the yeast brettanomyces clausenii. Biotechnol Bioeng Symp 17:221–238Google Scholar
  114. 114.
    Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRefGoogle Scholar
  115. 115.
    Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213CrossRefGoogle Scholar
  116. 116.
    Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630CrossRefGoogle Scholar
  117. 117.
    Kumar R, Wyman CE (2014) Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353CrossRefGoogle Scholar
  118. 118.
    Gauss WF, Suzuki S, Takagi M (1976). Manufacture of alcohol from cellulosic materials using plural ferments US3990944.Google Scholar
  119. 119.
    Takagi M, Abe S, Suzuki S, Emert GH, Yata N. A method for production of alcohol directly from cellulose using cellulase and yeast. Bioconversion Symposium. Delhi, India: Indian Institute of Technology, pp 551–71Google Scholar
  120. 120.
    Takagi M (1984) Inhibition of cellulase by fermentation products. Biotechnol Bioeng XXVI:1506–1507CrossRefGoogle Scholar
  121. 121.
    Nguyen TY, Cai CM, Osman O, Kumar R, Wyman CE (2016) CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem 18:1581–1589CrossRefGoogle Scholar
  122. 122.
    Ghosh P, Pamment NB, Martin WRB (1982) Simultaneous saccharification and fermentation of cellulose: effect of β-glucosidase activity and ethanol inhibition of cellulases. Enzym Microb Technol 4:425–430CrossRefGoogle Scholar
  123. 123.
    Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407CrossRefGoogle Scholar
  124. 124.
    Mohagheghi A, Tucker M, Grohmann K, Wyman C (1992) High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl Biochem Biotechnol 33:67–81CrossRefGoogle Scholar
  125. 125.
    Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by clostridium thermocellum. Appl Environ Microbiol 55:3131–3139Google Scholar
  126. 126.
    Paye JMD, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH et al (2016) Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels 9:1–13CrossRefGoogle Scholar
  127. 127.
    Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 2:152–195CrossRefGoogle Scholar
  128. 128.
    Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B et al (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062CrossRefGoogle Scholar
  129. 129.
    Wyman CE, Dale BE, Balan V, Elander RT, Holtzapple MT, Ramirez RS et al (2013) Comparative performance of leading pretreatment technologies for biological conversion of corn stover, poplar wood, and switchgrass to sugars. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, USA, pp 239–259Google Scholar
  130. 130.
    Elander R, Dale B, Holtzapple M, Ladisch M, Lee Y, Mitchinson C et al (2009) Summary of findings from the biomass refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose 16:649–659CrossRefGoogle Scholar
  131. 131.
    Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ et al (2011) Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour Technol 102:11105–11114CrossRefGoogle Scholar
  132. 132.
    Eggeman T, Elander R (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025CrossRefGoogle Scholar
  133. 133.
    Holtzapple MT, Humphrey AE (1984) The effect of organosolv pretreatment on the enzymatic-hydrolysis of poplar. Biotechnol Bioeng 26:670–676CrossRefGoogle Scholar
  134. 134.
    Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29:156–162CrossRefGoogle Scholar
  135. 135.
    Ferraz A, Rodriguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biotechnol 75:1190–1196CrossRefGoogle Scholar
  136. 136.
    Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007) Effect of organosolv ethanol pre-treatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 136–140:367–377Google Scholar
  137. 137.
    Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479CrossRefGoogle Scholar
  138. 138.
    Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472CrossRefGoogle Scholar
  139. 139.
    Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381CrossRefGoogle Scholar
  140. 140.
    Bozell JJ, Black SK, Myers M, Cahill D, Miller WP, Park S (2011) Solvent fractionation of renewable woody feedstocks: organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass Bioenergy 35:4197–4208CrossRefGoogle Scholar
  141. 141.
    Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRefGoogle Scholar
  142. 142.
    Singh S, Cheng G, Sathitsuksanoh N, Wu D, Varanasi P, George A et al (2015) Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Front Energy Res 2:62CrossRefGoogle Scholar
  143. 143.
    Shuai L, Questell-Santiago YM, Luterbacher JS (2016) A mild biomass pretreatment using [gamma]-valerolactone for concentrated sugar production. Green Chem 18:937–943CrossRefGoogle Scholar
  144. 144.
    Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8:1716–1725CrossRefGoogle Scholar
  145. 145.
    Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15:3140–3145CrossRefGoogle Scholar
  146. 146.
    Smith MD, Mostofian B, Cheng X, Petridis L, Cai CM, Wyman CE et al (2016) Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics. Green Chem 18:1268–1277CrossRefGoogle Scholar
  147. 147.
    Hirst EL, Morrison DR (1923) The action of highly concentrated hydrochloric acid on cellulose and on some derivatives of glucose and of xylose. J Chem Soc Trans 123:3226–3235CrossRefGoogle Scholar
  148. 148.
    Goldstein IS, Pereira H, Pittman JL, Strouse BA, Scaringelli FP (1983) The hydrolysis of cellulose with super concentrated hydrochloric-acid. Biotechnol Bioeng 13:17–25Google Scholar
  149. 149.
    Voloch M, Ladisch MR, Cantarella M, Tsao GT (1984) Preparation of cellodextrins using sulfuric acid. Biotechnol Bioeng 26:557–559CrossRefGoogle Scholar
  150. 150.
    Wijaya YP, Putra RDD, Widyaya VT, Ha J-M, Suh DJ, Kim CS (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour Technol 164:221–231CrossRefGoogle Scholar
  151. 151.
    Goldstein IS, Bayat-Makooi F, Sabharwal HS, Singh TM (1989) Acid recovery by electrodialysis and its economic implications for concentrated acid hydrolysis of wood. Appl Biochem Biotechnol 20–21:95–106CrossRefGoogle Scholar
  152. 152.
    Lambert R, Moore-Bulls M, Barrier J (1990) An evaluation of two acid hydrolysis processes for the conversion of cellulosic feedstocks to ethanol and other chemicals. Appl Biochem Biotechnol 24–25:773–783. 83CrossRefGoogle Scholar
  153. 153.
    von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52CrossRefGoogle Scholar
  154. 154.
    Katzen R, Othmer DF (1942) Wood hydrolysis. A continuous process. Ind Eng Chem 34:314–322CrossRefGoogle Scholar
  155. 155.
    Wright JD, D’Agincourt CG (1984) Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnol Bioeng Symp 14:105–123Google Scholar
  156. 156.
    Wright JD (1988) Ethanol from lignocellulose: an overview. Energy Prog 8:71–78Google Scholar
  157. 157.
    Brennan AH, Hoagland W, Schell DJ (1986) High temperature acid hydrolysis of biomass using an engineering scale plug flow reactor: results of low solids testing. Biotechnol Bioeng Symp 17:53–70Google Scholar
  158. 158.
    Kwarteng KI (1983) Kinetics of acid hydrolysis of hardwood in a plug flow reactor, PhD thesis. Thayer School of Engineering, Dartmouth College, HanoverGoogle Scholar
  159. 159.
    Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10CrossRefGoogle Scholar
  160. 160.
    Shen J, Wyman CE (2012) Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246CrossRefGoogle Scholar
  161. 161.
    Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753CrossRefGoogle Scholar
  162. 162.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T et al (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268CrossRefGoogle Scholar
  163. 163.
    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890CrossRefGoogle Scholar
  164. 164.
    Antal MJ Jr, Brittain A, De Almeida C, Mok W, Ramayya S (1987) Catalyzed and uncatalyzed conversion of cellulose biopolymer model compounds to chemical feedstocks in supercritical solvents. Energy Biomass Wastes 10th:865–877Google Scholar
  165. 165.
    Johnson DK, Chum HL, Anzick R, Baldwin RM (1988) Lignin liquefaction in supercritical water. Res Thermochemical Biomass Convers:485–496Google Scholar
  166. 166.
    Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog 17:246–255CrossRefGoogle Scholar
  167. 167.
    Veriansyah B, Kim JD (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522CrossRefGoogle Scholar
  168. 168.
    Dai J, Saayman J, Grace JR, Ellis N (2015) Gasification of woody biomass. Annu Rev Chem Biomol Eng 6:77–99CrossRefGoogle Scholar
  169. 169.
    Pereira EG, da Silva JN, de Oliveira JL, Machado CS (2012) Sustainable energy: a review of gasification technologies. Renew Sust Energ Rev 16:4753–4762CrossRefGoogle Scholar
  170. 170.
    Park CS, Raju ASK (2016) Current developments in thermochemical conversion of biomass to fuels and chemicals. In: Kumar R, Singh S, Balan V (eds) Valorization of lignocellulosic biomass in a biorefinery: from logistics to environmental and performance impact. Nova Science Publishers, New York (in press)Google Scholar
  171. 171.
    Jeon SK, Park CS, Hackett CE, Norbeck JM (2007) Characteristics of steam hydrogasification of wood using a micro-batch reactor. Fuel 86:2817–2823CrossRefGoogle Scholar
  172. 172.
    Shen YW, Brown RC, Wen ZY (2017) Syngas fermentation by clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production. Appl Energy 187:585–594CrossRefGoogle Scholar
  173. 173.
    Brown RC (2007) Hybrid thermochemical/biological processing. Appl Biochem Biotechnol 137:947–956Google Scholar
  174. 174.
    Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23:113–128CrossRefGoogle Scholar
  175. 175.
    Wright M, Brown RC (2007) Establishing the optimal sizes of different kinds of biorefineries. Biofuels Bioprod Bioref-Biofpr 1:191–200CrossRefGoogle Scholar
  176. 176.
    Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2015) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Biomass to Biofuels 83:91–100Google Scholar
  177. 177.
    Marie-Rose SC, Chornet E, Lynch D, Lavoie JM (2011) From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis. Energy Sustain III 143:123–12+Google Scholar
  178. 178.
    Wyman CE (1994) Ethanol from lignocellulosic biomass – technology, economics, and opportunities. Bioresour Technol 50:3–16CrossRefGoogle Scholar
  179. 179.
    Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: NREL/TP-5100-47764. National Renewable Energy Laboratory, GoldenGoogle Scholar
  180. 180.
    Tao L, Schell D, Davis R, Tan E, Elander R, Bratis A (2014) NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover. National Renewable Energy Laboratory (NREL), GoldenCrossRefGoogle Scholar
  181. 181.
    Humbird D, Mohagheghi A, Dowe N, Schell DJ (2010) Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol Prog 26:1245–1251CrossRefGoogle Scholar
  182. 182.
    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087CrossRefGoogle Scholar
  183. 183.
    Balch ML, Holwerda EK, Davis M, Sykes R, Happs RM, Kumar R et al (2017) Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by clostridium thermocellum in the presence and absence of continuous in-situ ball-milling. Energy Environ Sci 10:1252–1261Google Scholar
  184. 184.
    Salvachua D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17:4951–4967CrossRefGoogle Scholar
  185. 185.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 111:12013–12018CrossRefGoogle Scholar
  186. 186.
    Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas A et al (2015) Synergistic enzymatic and microbial conversion of lignin for lipid. Green Chem 18:1306–1312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Charles E. Wyman
    • 1
    • 2
    • 3
  • Charles M. Cai
    • 2
    • 3
  • Rajeev Kumar
    • 2
    • 3
  1. 1.Department of Chemical and Environmental Engineering and Center for Environmental Research and Technology (CE-CERT)Bourns College of Engineering, University of California RiversideRiversideUSA
  2. 2.BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL)Oak RidgeUSA
  3. 3.Center for Environmental Research and Technology, Bourns College of Engineering, University of California RiversideRiversideUSA