Skip to main content

Geothermal Resources Worldwide, Direct Heat Utilization of

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Agribusiness applications:

In the geothermal context, they are the heating of greenhouses and open ground for various crops, aquaculture pond and raceway heating for various aquatic species, and the heating of animal pens and houses in an effort to increase production and shorten the growing cycle.

Balneology:

The science of healing qualities of baths, especially with natural mineral waters and the therapeutic use of natural warm or mineral winters.

District heating:

Heating of more than one building from a central heating plant with the heated fluid provided through a central distribution system of pipes.

Heat exchanger:

A device for transferring heat from one fluid to another. The fluids are usually separated by conducting walls of metal or plastic.

Heat pump:

A device which, by the consumption of work or heat, effects the transport of heat between a lower-temperature and a higher-temperature source. The useful output is heat in conventional usage. The reverse process is called a refrigerator used for the removal of heat.

Joule (J):

The SI unit for all forms of energy or work. It is equal to 1 W-s or 0.239 cal.

Spa:

A resort using mineral water for bathing, soaking, and drinking along with covering portions of the body with mineral muds for therapeutic purposes. Diet, exercise, and rest can also be part of the spa treatment plan.

Watt (W):

A unit of power or energy produced over time, equivalent to 1 J/s or 0.001341 horsepower (hp).

Bibliography

Primary Literature

  1. Muffler LPJ (ed) (1979) Assessment of geothermal resources of the United States – 1978. USGS Circular 790, Arlington, 163 p

    Google Scholar 

  2. Gudmundsson JS, Lund JW (1985) Direct uses of earth heat. Int J Energy Res 9:345–375

    Article  CAS  Google Scholar 

  3. Geo-Heat Center (1997) Geothermal direct-use equipment. Q Bull 19(1):38, Klamath Falls. http://geoheat.oit.edu/bulletin/bull19-1/bull19-1.pdf

  4. Lund JW, Freeston DH, Boyd TL (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40:159–180. Elsevier, Amsterdam (revision of the data collected for WGC2010 in Bali, Indonesia)

    Google Scholar 

  5. Lund JW, Bloomquist RG, Boyd TL, Renner J (2005) The United States of America country update – 2005. Geothermal Resources Council Transactions, vol 29, Davis (CD-ROM)

    Google Scholar 

  6. Ragnarsson A (2010) Geothermal development in Iceland 2005–2009. In: Proceedings, world geothermal congress 2010, Bali, paper no. 0124

    Google Scholar 

  7. Gudmundsson JS, Freeston DH, Lienau PJ (1985) The Lindal diagram. Geothermal Res Council Trans 9(1):15–19, Davis

    Google Scholar 

  8. Lund JW (1996) Balneological use of thermal and mineral waters in the USA. Geothermics 25(1):103–148, Elsevier, UK

    Article  CAS  Google Scholar 

  9. Taguchi S, Itoi R, Ysa Y (1996) Beppu hot springs. Geo-Heat Cent Q Bull 17(2):1–6

    Google Scholar 

  10. Lund JW (1990) Geothermal spas in Czechoslovakia. Geo-Heat Cent Q Bull 12(2):20–24

    Google Scholar 

  11. Boyd TL (1999) The Oregon institute of technology geothermal heating system – then and now. Geo-Heat Cent Q Bull 20(1):10–13

    Google Scholar 

  12. Lund JW, Boyd T (2009) Oregon institute of technology geothermal uses and projects, past, present and future. In: Proceedings, thirty-fourth workshop on geothermal reservoir engineering, Stanford University, Stanford (CD ROM)

    Google Scholar 

  13. Bloomquist RG, Nimmons JT, Rafferty K (1987) District heating development guide, vol 1. Washington State Energy Office, Olympia

    Google Scholar 

  14. Rafferty K (1992) A century of service: the boise warm springs water district system. Geo-Heat Cent Q Bull 14(2):1–5

    Google Scholar 

  15. Frimannsson H (1991) Hitaveita Reykjavikur after 60 years of operation – development and benefits. Geo-Heat Cent Q Bull 13(4):1–7

    Google Scholar 

  16. Lund JW (2005) Hitaveita Reykjavikur and the Nesjavellir geothermal co-generation power plant. Geo-Heat Cent Q Bull 26(2):19–24

    Google Scholar 

  17. Boissier F, Desplan A, Laplaige P (2010) France country update. In: Proceeding of the world geothermal congress 2010, Bali, paper no. 161

    Google Scholar 

  18. Lund JW, Klein R (1995) Prawn park – Taupo, New Zealand. Geo-Heat Cent Q Bull 16(4):27–29

    Google Scholar 

  19. Lund JW (1995) Onion dehydration. Geothermal Res Council Trans 19:69–74, Davis

    Google Scholar 

  20. Chiasson A (2007) Geothermal energy utilization in ethanol production. Geo-Heat Cent Q Bull 28(1):2–5

    Google Scholar 

  21. Trexler DT, Flynn T, Hendrix JW (1990) Heap leaching. Geo-Heat Cent Q Bull 12(4):1–4

    Google Scholar 

  22. Lund JW, Rangel MA (1995) Pilot fruit drier for the Los Azufres geothermal field, Mexico. In: Proceedings of the world geothermal congress, Florence, Italy 1995, pp 2335–2338

    Google Scholar 

  23. Lund JW, Lienau PJ (1994) Onion dehydration. Geo-Heat Cent Q Bull 15(4):15–18

    Google Scholar 

  24. Rafferty K (2003) Industrial process and the potential for geothermal applications. Geo-Heat Cent Q Bull 24(3):7–12

    Google Scholar 

  25. Rafferty K (2004) Direct-use temperature requirements: a few rules of thumb. Geo-Heat Cent Q Bull 25(2):1–3

    Google Scholar 

  26. Lund JW, Lienau PJ, Lunis BC (eds) (1998) Geothermal direct-use engineering and design guidebook. Geo-Heat Center, Klamath Falls, p 470

    Google Scholar 

  27. Rafferty K, Keiffer S (2002) Thermal expansion in enclosed lineshaft pump columns. Geo-Heat Cent Q Bull 23(2):11–15

    Google Scholar 

  28. Ragnarsson A, Hrolfsson I (1998) Akranes and Borgarfjordur district heating system. Geo-Heat Cent Q Bull 19(4):10–13

    Google Scholar 

  29. Ryan GP (1981) Equipment used in direct heat projects. Geothermal Res Council Trans 5:483–485, Davis

    Google Scholar 

  30. Culver GG, Reistad GM (1978) Evaluation and design of downhole heat exchangers for direct applications. Geo-Heat Center, Klamath Falls

    Google Scholar 

  31. Geo-Heat Center (1999) Downhole heat exchangers. Geo-Heat Cent Q Bull 20(3):28. http://geoheat.oit.edu/bulletin/bull20-3/bull20-3.pdf

  32. Dunstall MG, Freeston DM (1990) U-tube downhole heat exchanger performance in a 4-in. well, Rotorua. In: Proceedings of the 12th New Zealand geothermal workshop, Auckland, pp 229–232

    Google Scholar 

  33. Curtis R, Lund J, Sanner B, Rybach L, Hellström G (2005) Ground source heat pumps – geothermal energy for anyone, anywhere: current worldwide activity. In: Proceedings of the world geothermal congress, 2005 (CD-ROM), International Geothermal Association, Antalya

    Google Scholar 

  34. Rafferty K (2008) An Information survival kit for the prospective geothermal heat pump owner. HeatSpring Energy, Cambridge, MA, p 32

    Google Scholar 

  35. Lund JW, Sanner B, Rybach L, Curtis R, Hellström G (2003) Ground-source heat pumps – a world overview, renewable energy world. James & James, London, pp 218–227

    Google Scholar 

  36. Kavanaugh S, Rafferty K (1997) Ground-source design of geothermal systems for commercial and institutional buildings. ASHRAE, Atlanta, p 167

    Google Scholar 

  37. Rafferty K (1983) Absorption refrigeration: cooling with hot water. Geo-Heat Cent Q Bull 8(1):17–20

    Google Scholar 

  38. Geo-Heat Center (2005) Combined heat and power plant. Geo-Heat Cent Q Bull 26(3):36. http://geoheat.oit.edu/bulletin/bull26-3/bull26-3.pdf

  39. Lund JW (complied by) (2005) Combined heat and power plant, Neustadt-Glewe, Germany. Geo-Heat Cent Q Bull 26(2):31–34

    Google Scholar 

  40. Lund, J. W., and Boyd, T. L., 2015. Direct Utilization of Geothermal Energy 2015 Worldwide Review, Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 20–25, 2015, 31 p.

    Google Scholar 

  41. Ragnarsson A (2015) Geothermal development in Iceland 2010–2014, Proceeding, World Geothermal Congress, 2015, International Geothermal Association, p 14

    Google Scholar 

Books and Reviews

  • Cataldi R, Hodgson SF, Lund JW (eds) (1999) Stories from a heated earth – our geothermal heritage. International Geothermal Association and the Geothermal Resources Council, Davis, p 569

    Google Scholar 

  • Kavanaugh SP, Rafferty K (1997) Ground-source heat pumps – design of geothermal systems for commercial and institutional buildings. American Society of Heating Refrigerating and Air-Conditioning Engineers, Atlanta, p 167

    Google Scholar 

  • Lund JW (1996) Lectures on direct utilization of geothermal energy, United Nations University, Geothermal training program, report 1. Orkustofnun, Reykjavik, 123 p

    Google Scholar 

  • Lund JW, Lienau PJ, Lunis BC (eds) (1998) Geothermal direct-use engineering and design guidebook. Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, p 454

    Google Scholar 

Websites

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Lund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lund, J.W. (2015). Geothermal Resources Worldwide, Direct Heat Utilization of. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_305-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_305-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics