Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Application of Ionic Liquids in Separation and Fractionation Processes

  • Emanuel V. Capela
  • João A. P. Coutinho
  • Mara G. Freire
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_1005-1

Glossary

Aqueous biphasic systems

Liquid-liquid systems formed by two water-soluble components dissolved in water, which above given concentrations form two phases.

Biorefinery

Facility with integrated processes to convert biomass into energy, fuels, materials, and commodity and value-added chemicals.

Green chemistry

Concept addressing the design of chemical products and processes aiming at reduce or eliminate the use and generation of hazardous substances.

Ionic liquids

Low melting temperature salts, composed of organic cations and organic/inorganic anions.

Natural products

Compounds that can be obtained from biomass.

Solid-liquid extraction

Process in which a solvent is added to solid biomass samples in order to extract target compounds.

Definition of the Subject

Research on the extraction and separation of value-added products from biomass has been a hot topic in the framework of biorefinery aiming a sustainable conversion of biomass into chemicals, materials, energy, and fuels....

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), and project MultiBiorefinery (POCI-01-0145-FEDER-016403), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. E.V. Capela also acknowledges FCT for his PhD grant (SFRH/BD/126202/2016). M.G. Freire acknowledges the European Research Council (ERC) for the Starting Grant ERC-2013-StG-3377.

Bibliography

  1. 1.
    Kamm B, Gruber PR, Kamm M (2006) Biorefineries–industrial processes and products. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922CrossRefGoogle Scholar
  3. 3.
    Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons Ltd, United Kingdom, pp 201–222Google Scholar
  4. 4.
    Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20(4):1727–1737CrossRefGoogle Scholar
  5. 5.
    Clark JH, Luque R, Matharu AS (2012) Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng 3:183–207CrossRefGoogle Scholar
  6. 6.
    Huang H-J, Ramaswamy S, Tschirner U, Ramarao B (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21CrossRefGoogle Scholar
  7. 7.
    Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. In: Twenty-sixth symposium on biotechnology for fuels and chemicals. Springer, Humana, Totowa, pp 765–778Google Scholar
  8. 8.
    Moncheva S, Gorinstein S, Shtereva G, Toledo F, Arancibia-Avila P, Goshev I, Trakhtenberg S (2003) Biomass, protein- and carbohydrate-composition of phytoplankton in Varna Bay, Black Sea. Hydrobiologia 501(1–3):23–28CrossRefGoogle Scholar
  9. 9.
    Laurens L, Nagle N, Davis R, Sweeney N, Van Wychen S, Lowell A, Pienkos P (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production. Green Chem 17:1145–1158CrossRefGoogle Scholar
  10. 10.
    Han L, Pei HY, Hu WR, Jiang LQ, Ma GX, Zhang S, Han F (2015) Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresour Technol 175:262–268CrossRefGoogle Scholar
  11. 11.
    Berger RG (2015) Biotechnology as a source of natural volatile flavours. Curr Opin Food Sci 1:38–43CrossRefGoogle Scholar
  12. 12.
    Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89(2):233–242CrossRefGoogle Scholar
  13. 13.
    Březinová Belcredi N, Ehrenbergerova J, Fiedlerova V, Belakova S, Vaculova K (2010) Antioxidant vitamins in barley green biomass. J Agric Food Chem 58(22):11755–11761CrossRefGoogle Scholar
  14. 14.
    David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14(2):299–315CrossRefGoogle Scholar
  15. 15.
    Schmitt EK, Moore CM, Krastel P, Petersen F (2011) Natural products as catalysts for innovation: a pharmaceutical industry perspective. Curr Opin Chem Biol 15(4):497–504CrossRefGoogle Scholar
  16. 16.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335CrossRefGoogle Scholar
  17. 17.
    Gómez-Galera S, Pelacho AM, Gené A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26(10):1689–1715CrossRefGoogle Scholar
  18. 18.
    Ressmann AK, Strassl K, Gaertner P, Zhao B, Greiner L, Bica K (2012) New aspects for biomass processing with ionic liquids: towards the isolation of pharmaceutically active betulin. Green Chem 14(4):940–944CrossRefGoogle Scholar
  19. 19.
    Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312CrossRefGoogle Scholar
  20. 20.
    Domingues RMA, Guerra AR, Duarte M, Freire CSR, Neto CP, Silva CMS, Silvestre AJD (2014) Bioactive triterpenic acids: from agroforestry biomass residues to promising therapeutic tools. Mini-Rev Org Chem 11(3):382–399CrossRefGoogle Scholar
  21. 21.
    Anastas PT, Heine LG, Williamson TC (2000) Green chemical syntheses and processes: introduction. ACS Publications, Washington, DCCrossRefGoogle Scholar
  22. 22.
    Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Passos H, Freire MG, Coutinho JAP (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16(12):4786–4815CrossRefGoogle Scholar
  24. 24.
    Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9(9):927–934CrossRefGoogle Scholar
  25. 25.
    Dupont J, de Souza RF, Suarez PA (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692CrossRefGoogle Scholar
  26. 26.
    Freire MG, Claudio AFM, Araujo JM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41(14):4966–4995CrossRefGoogle Scholar
  27. 27.
    Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2083CrossRefGoogle Scholar
  28. 28.
    Ranke J, Stolte S, Stormann R, Arning J, Jastorff B (2007) Design of sustainable chemical products – the example of ionic liquids. Chem Rev 107(6):2183–2206CrossRefGoogle Scholar
  29. 29.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  30. 30.
    Canongia Lopes JN, Padua AA (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110(7):3330–3335CrossRefGoogle Scholar
  31. 31.
    Walden P (1914) Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze. Известия Российской академии наук Серия математическая 8(6):405–422Google Scholar
  32. 32.
    Graenacher C (1934) Cellulose solution. Google PatentsGoogle Scholar
  33. 33.
    Freire MG, Neves CM, Marrucho IM, Coutinho JAP, Fernandes AM (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114(11):3744–3749CrossRefGoogle Scholar
  34. 34.
    Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399CrossRefGoogle Scholar
  35. 35.
    Allen CR, Richard PL, Ward AJ, van de Water LG, Masters AF, Maschmeyer T (2006) Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett 47(41):7367–7370CrossRefGoogle Scholar
  36. 36.
    Ventura SPM, Gurbisz M, Ghavre M, Ferreira FMM, Gonçalves F, Beadham I, Quilty B, Coutinho JAP, Gathergood N (2013) Imidazolium and pyridinium ionic liquids from mandelic acid derivatives: synthesis and bacteria and algae toxicity evaluation. ACS Sustain Chem Eng 1(4):393–402CrossRefGoogle Scholar
  37. 37.
    Tao D-J, Cheng Z, Chen F-F, Li Z-M, Hu N, Chen X-S (2013) Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids. J Chem Eng Data 58(6):1542–1548CrossRefGoogle Scholar
  38. 38.
    Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39(2):600–637CrossRefGoogle Scholar
  39. 39.
    Dyson PJ, Geldbach TJ (2007) Applications of ionic liquids in synthesis and catalysis. Electrochem Soc Interface 16(1):50–53Google Scholar
  40. 40.
    Ventura SP, Santos LD, Saraiva JA, Coutinho JAP (2012) Ionic liquids microemulsions: the key to Candida antarctica lipase B superactivity. Green Chem 14(6):1620–1625CrossRefGoogle Scholar
  41. 41.
    Soares B, Passos H, Freire CS, Coutinho JAP, Silvestre AJ, Freire MG (2016) Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds. Green Chem 18(17):4582–4604CrossRefGoogle Scholar
  42. 42.
    Durga G, Mishra A (2016) Ionic liquids: industrial applications. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons Ltd, United KingdomGoogle Scholar
  43. 43.
    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9(1):63–69CrossRefGoogle Scholar
  44. 44.
    Ramaswamy S, Huang H-J, Ramarao BV (2013) Separation and purification technologies in biorefineries. Wiley, ChichesterCrossRefGoogle Scholar
  45. 45.
    Pereira MM, Coutinho JAP, Freire MG (2015) Ionic liquids as efficient tools for the purification of biomolecules and bioproducts from natural sources. In: Ionic liquids in the biorefinery concept: challenges and perspectives, vol 36. Royal Society of Chemistry, United Kingdom, p 227Google Scholar
  46. 46.
    Du F-Y, Xiao X-H, Li G-K (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140(1):56–62CrossRefGoogle Scholar
  47. 47.
    Wang S-Y, Yang L, Zu Y-G, Zhao C-J, Sun X-W, Zhang L, Zhang Z-H (2011) Design and performance evaluation of ionic-liquids-based microwave-assisted environmentally friendly extraction technique for camptothecin and 10-hydroxycamptothecin from samara of camptotheca acuminata. Ind Eng Chem Res 50(24):13620–13627CrossRefGoogle Scholar
  48. 48.
    Yang L, Sun X, Yang F, Zhao C, Zhang L, Zu Y (2012) Application of ionic liquids in the microwave-assisted extraction of proanthocyanidins from Larix gmelini bark. Int J Mol Sci 13(4):5163–5178CrossRefGoogle Scholar
  49. 49.
    Ma C-H, Wang S-Y, Yang L, Zu Y-G, Yang F-J, Zhao C-J, Zhang L, Zhang Z-H (2012) Ionic liquid-aqueous solution ultrasonic-assisted extraction of camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata samara. Chem Eng Process Process Intensif 57:59–64CrossRefGoogle Scholar
  50. 50.
    Wang W, Li Q, Liu Y, Chen B (2015) Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface. Ultrason Sonochem 24:13–18CrossRefGoogle Scholar
  51. 51.
    Sun Y, Ding S, Huang H, Hu Y (2017) Ionic liquid-based enzyme-assisted extraction of chlorogenic acid from Flos Lonicera Japonicae. Bioresour Bioprocess 4(1):45CrossRefGoogle Scholar
  52. 52.
    Liu T, Sui X, Li L, Zhang J, Liang X, Li W, Zhang H, Fu S (2016) Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves. Anal Chim Acta 903:91–99CrossRefGoogle Scholar
  53. 53.
    Ma H-H, Zhang B-X, Zhang P, Li S, Gao Y-F, Hu X-M (2016) An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technol 148:138–145CrossRefGoogle Scholar
  54. 54.
    Gschwend FJ, Brandt-Talbot A, Chambon CL, Hallett JP (2017) Ultra-low cost ionic liquids for the delignification of biomass. In: Ionic liquids: current state and future directions. American Chemical Society, Washington, DC, pp 209–223Google Scholar
  55. 55.
    Zakaria SM, Idris A, Alias Y (2017) Lignin extraction from coconut shell using aprotic ionic liquids. Bioresources 12(3):5749–5774CrossRefGoogle Scholar
  56. 56.
    Carneiro AP, Rodríguez O, Macedo EA (2017) Dissolution and fractionation of nut shells in ionic liquids. Bioresour Technol 227:188–196CrossRefGoogle Scholar
  57. 57.
    da Costa Lopes AM, Brenner M, Falé P, Roseiro LB, Bogel-Łukasik R (2016) Extraction and purification of phenolic compounds from lignocellulosic biomass assisted by ionic liquid, polymeric resins, and supercritical CO2. ACS Sustain Chem Eng 4(6):3357–3367CrossRefGoogle Scholar
  58. 58.
    Bogdanov MG, Keremedchieva R, Svinyarov I (2015) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. III. Ionic liquid regeneration and glaucine recovery from ionic liquid-aqueous crude extract of Glaucium flavum Cr.(Papaveraceae). Sep Purif Technol 155:13–19CrossRefGoogle Scholar
  59. 59.
    Mehta MJ, Kumar A (2017) Green and efficient processing of cinnamomum cassia bark by using ionic liquids: extraction of essential oil and construction of UV-resistant composite films from residual biomass. Chem Asian J 12(24):3150–3155CrossRefGoogle Scholar
  60. 60.
    Ferreira AM, Morais ES, Leite AC, Mohamadou A, Holmbom B, Holmbom T, Neves BM, Coutinho JAP, Freire MG, Silvestre AJ (2017) Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem 19(11):2626–2635CrossRefGoogle Scholar
  61. 61.
    de Faria EL, Shabudin SV, Claúdio AFM, Válega M, Domingues FM, Freire CS, Silvestre AJ, Freire MG (2017) Aqueous solutions of surface-active ionic liquids: remarkable alternative solvents to improve the solubility of triterpenic acids and their extraction from biomass. ACS Sustain Chem Eng 5(8):7344–7351CrossRefGoogle Scholar
  62. 62.
    Ma W, Row KH (2017) Optimized extraction of bioactive compounds from Herba Artemisiae Scopariae with ionic liquids and deep eutectic solvents. J Liq Chromatogr Relat Technol 40(9):459–466CrossRefGoogle Scholar
  63. 63.
    Cláudio AFM, Neves MC, Shimizu K, Lopes JNC, Freire MG, Coutinho JAP (2015) The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes. Green Chem 17(7):3948–3963CrossRefGoogle Scholar
  64. 64.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125(22):6632–6633CrossRefGoogle Scholar
  65. 65.
    Ferreira AM, Esteves PD, Boal-Palheiros I, Pereiro AB, Rebelo LPN, Freire MG (2016) Enhanced tunability afforded by aqueous biphasic systems formed by fluorinated ionic liquids and carbohydrates. Green Chem 18(4):1070–1079CrossRefGoogle Scholar
  66. 66.
    Capela EV, Quental MV, Domingues P, Coutinho JAP, Freire MG (2017) Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chem 19(8):1850–1854CrossRefGoogle Scholar
  67. 67.
    Albertsson P-A (1986) Partition of cell particles and macromolecules. Separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. Wiley, New YorkGoogle Scholar
  68. 68.
    Pereira JF, Rebelo LPN, Rogers RD, Coutinho JAP, Freire MG (2013) Combining ionic liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic systems. Phys Chem Chem Phys 15(45):19580–19583CrossRefGoogle Scholar
  69. 69.
    Santos JH, Ventura SP, Coutinho JAP, Souza RL, Soares CM, Lima ÁS (2015) Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds. Biotechnol Prog 31(1):70–77CrossRefGoogle Scholar
  70. 70.
    Almeida MR, Passos H, Pereira MM, Lima ÁS, Coutinho JAP, Freire MG (2014) Ionic liquids as additives to enhance the extraction of antioxidants in aqueous two-phase systems. Sep Purif Technol 128:1–10CrossRefGoogle Scholar
  71. 71.
    Cláudio AFM, Marques CF, Boal-Palheiros I, Freire MG, Coutinho JAP (2014) Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chem 16(1):259–268CrossRefGoogle Scholar
  72. 72.
    Cláudio AFM, Ferreira AM, Freire CS, Silvestre AJ, Freire MG, Coutinho JAP (2012) Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Sep Purif Technol 97:142–149CrossRefGoogle Scholar
  73. 73.
    Santos JH, Martins M, Silvestre AJ, Coutinho JAP, Ventura SP (2016) Fractionation of phenolic compounds from lignin depolymerisation using polymeric aqueous biphasic systems with ionic surfactants as electrolytes. Green Chem 18(20):5569–5579CrossRefGoogle Scholar
  74. 74.
    Xavier L, Deive FJ, Sanromán M, Rodríguez A, Freire MS, González-Álvarez J, Gortares-Moroyoqui P, Ruíz-Cruz S, Ulloa RG (2017) Increasing the greenness of lignocellulosic biomass biorefining processes by means of biocompatible separation strategies. ACS Sustain Chem Eng 5(4):3339–3345CrossRefGoogle Scholar
  75. 75.
    Santos PL, Santos LNS, Ventura SPM, de Souza RL, Coutinho JAP, Soares CMF, Lima ÁS (2016) Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids. Chem Eng Res Des 112:103–112CrossRefGoogle Scholar
  76. 76.
    Sousa RCS, Pereira MM, Freire MG, Coutinho JAP (2018) Evaluation of the effect of ionic liquids as adjuvants in polymer-based aqueous biphasic systems using biomolecules as molecular probes. Sep Purif Technol 196:244–253Google Scholar
  77. 77.
    Lima ÁS, Soares CMF, Paltram R, Halbwirth H, Bica K (2017) Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions. Fluid Phase Equilib 451:68–78CrossRefGoogle Scholar
  78. 78.
    He A, Dong B, Feng X, Yao S (2018) Extraction of bioactive ginseng saponins using aqueous two-phase systems of ionic liquids and salts. Sep Purif Technol 196:270–280Google Scholar
  79. 79.
    Ribeiro BD, Coelho MAZ, Rebelo LPN, Marrucho IM (2013) Ionic liquids as additives for extraction of saponins and polyphenols from mate (Ilex paraguariensis) and tea (Camellia sinensis). Ind Eng Chem Res 52(34):12146–12153CrossRefGoogle Scholar
  80. 80.
    Tan Z-J, Li F-F, Xu X-L, Xing J-M (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393CrossRefGoogle Scholar
  81. 81.
    Tan Z, Li F, Xu X (2012) Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep Purif Technol 98:150–157CrossRefGoogle Scholar
  82. 82.
    Fan J-P, Cao J, Zhang X-H, Huang J-Z, Kong T, Tong S, Tian Z-Y, Zhu J-H, Ouyang X-K (2012) Extraction of puerarin using ionic liquid based aqueous two-phase systems. Sep Sci Technol 47(12):1740–1747CrossRefGoogle Scholar
  83. 83.
    Zuo Y, Chen H, Deng Y (2002) Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57(2):307–316CrossRefGoogle Scholar
  84. 84.
    Ahlawat KS, Khatkar BS (2011) Processing, food applications and safety of aloe vera products: a review. J Food Sci Technol 48(5):525–533CrossRefGoogle Scholar
  85. 85.
    Aysan E, Bektas H, Ersoz F (2010) A new approach to postoperative peritoneal adhesions: prevention of peritoneal trauma by aloe vera gel. Eur J Obstet Gynecol Reprod Biol 149(2):195–198CrossRefGoogle Scholar
  86. 86.
    Pugh N, Ross SA, ElSohly MA, Pasco DS (2001) Characterization of Aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agric Food Chem 49(2):1030–1034CrossRefGoogle Scholar
  87. 87.
    Duarte EL, Oliveira TR, Alves DS, Micol V, Lamy MT (2008) On the interaction of the anthraquinone barbaloin with negatively charged DMPG bilayers. Langmuir 24(8):4041–4049CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Emanuel V. Capela
    • 1
  • João A. P. Coutinho
    • 1
  • Mara G. Freire
    • 1
  1. 1.CICECO – Aveiro Institute of Materials, Chemistry DepartmentUniversity of AveiroAveiroPortugal

Section editors and affiliations

  • Buxing Han
    • 1
  • Tianbin Wu
    • 2
  1. 1.Institute of Chemistry, Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingChina