Handbook of Mathematical Methods in Imaging pp 257-304 | Cite as
Duality and Convex Programming
Reference work entry
- 2 Citations
- 4.3k Downloads
Abstract
This chapter surveys key concepts in convex duality theory and their application to the analysis and numerical solution of problem archetypes in imaging. Convex analysis, Variational analysis, Duality
Keywords
Convex Analysis Approach Fenchel Conjugate Fenchel Duality Linear Inverse Problems Sandwich Theorem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Notes
Acknowledgements
D. Russell Luke’s work was supported in part by NSF grants DMS-0712796 and DMS-0852454. Work on the second edition was supported by DFG grant SFB755TPC2. The authors wish to thank Matthew Tam for his assistance in preparing a revision for the second edition of the handbook.
References
- 1.Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15(2), 345–348 (2008)zbMATHMathSciNetGoogle Scholar
- 2.Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)zbMATHGoogle Scholar
- 3.Aubert, G., Kornprost, P.: Mathematical Problems Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)zbMATHGoogle Scholar
- 4.Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)zbMATHGoogle Scholar
- 5.Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)zbMATHMathSciNetGoogle Scholar
- 6.Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)zbMATHGoogle Scholar
- 7.Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm and Fienup variants: a view from convex feasibility. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)MathSciNetGoogle Scholar
- 8.Bauschke, H.H., Combettes, P.L., Luke, D.R.: A hybrid projection reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)Google Scholar
- 9.Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)zbMATHMathSciNetGoogle Scholar
- 10.Bauschke, H.H., Cruz, J.Y., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle (2013). Preprint. arXiv:1309.4709v1 [math.OC]Google Scholar
- 11.Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013)zbMATHMathSciNetGoogle Scholar
- 12.Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)zbMATHMathSciNetGoogle Scholar
- 13.Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found Comput. Math. 14(1), 63–83 (2014)zbMATHMathSciNetGoogle Scholar
- 14.Bauscke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. (in press). doi:10.1007/510013-013-0049-8Google Scholar
- 15.Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)zbMATHMathSciNetGoogle Scholar
- 16.Beck, A., Teboulle, M.: A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, pp. 33–48. Springer, New York (2011)Google Scholar
- 17.Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A ℓ 1-unified variational framework for image restoration. In: Pajdla, T., Matas, J. (eds.) Proceedings of the Eighth European Conference on Computer Vision, Prague, 2004. Lecture Notes in Computer Science, vol. 3024, pp. 1–13. Springer, New York (2004)Google Scholar
- 18.Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimensional l p spectral estimation problems. SIAM J. Contr. Optim. 26, 985–996 (1988)zbMATHMathSciNetGoogle Scholar
- 19.Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harm. Anal. 27, 265–274 (2009)zbMATHMathSciNetGoogle Scholar
- 20.Blumensath, T., Davies, M.E.: Normalised iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sign. Process. 4, 298–309 (2010)Google Scholar
- 21.Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
- 22.Borwein, J.M.: On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems. Math. Program 61, 251–261 (1993)zbMATHGoogle Scholar
- 23.Borwein, J.M., Hamilton, C.: Symbolic fenchel conjugation. Math. Program 116, 17–35 (2009)zbMATHMathSciNetGoogle Scholar
- 24.Borwein, J.M., Jon Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedias in Mathematics, vol. 109. Cambridge University Press, New York (2009)Google Scholar
- 25.Borwein, J.M., Lewis, A.S.: Duality relationships for entropy-like minimization problems. SIAM J. Contr. Optim. 29, 325–338 (1990)MathSciNetGoogle Scholar
- 26.Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optim. 1, 191–205 (1991)zbMATHMathSciNetGoogle Scholar
- 27.Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)Google Scholar
- 28.Borwein, J.M., Luke, D.R.: Entropic regularization of the ℓ 0 function. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 65–92. Springer, Berlin (2011)Google Scholar
- 29.Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 93–109. Springer, Berlin (2011)Google Scholar
- 30.Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0381-xGoogle Scholar
- 31.Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)zbMATHGoogle Scholar
- 32.Borwein, J.M., Zhu, Q.J.: Variational methods in the presence of symmetry. Adv. Nonlinear Anal. 2(3), 271–307 (2013)zbMATHMathSciNetGoogle Scholar
- 33.Borwein, J.M., Lewis, A.S., Limber, M.N., Noll, D.: Maximum entropy spectral analysis using first order information. Part 2: a numerical algorithm for fisher information duality. Numer. Math. 69, 243–256 (1995)zbMATHMathSciNetGoogle Scholar
- 34.Borwein, J.M., Lewis, A.S., Noll, D.: Maximum entropy spectral analysis using first order information. Part 1: fisher information and convex duality. Math. Oper. Res. 21, 442–468 (1996)zbMATHMathSciNetGoogle Scholar
- 35.Boyd, S., Vandenberghe, L.: Convex Optimization. Oxford University Press, New York (2003)Google Scholar
- 36.Brezhneva, O.A., Tret’yakov, A.A., Wright, S.E.: A simple and elementary proof of the Karush–Kuhn–Tucker theorem for inequality-constrained optimization. Optim. Lett. 3, 7–10 (2009)zbMATHMathSciNetGoogle Scholar
- 37.Burg, J.P.: Maximum entropy spectral analysis. Paper presented at the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City (1967)Google Scholar
- 38.Burke, J.V., Luke, D.R.: Variational analysis applied to the problem of optical phase retrieval. SIAM J. Contr. Optim. 42(2), 576–595 (2003)zbMATHMathSciNetGoogle Scholar
- 39.Byrne, C.L.: Signal Processing: A Mathematical Approach. AK Peters, Natick (2005)Google Scholar
- 40.Candés, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)zbMATHMathSciNetGoogle Scholar
- 41.Candés, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)zbMATHMathSciNetGoogle Scholar
- 42.Censor, Y., Zenios, S.A.: Parallel Optimization: Theory Algorithms and Applications. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
- 43.Chambolle, A.: An algorithm for total variation minimization and applications. J Math. Imaging Vis. 20, 89–97 (2004)MathSciNetGoogle Scholar
- 44.Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)zbMATHMathSciNetGoogle Scholar
- 45.Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)zbMATHMathSciNetGoogle Scholar
- 46.Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal–dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)zbMATHMathSciNetGoogle Scholar
- 47.Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)zbMATHMathSciNetGoogle Scholar
- 48.Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Convex and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, New York (2012)Google Scholar
- 49.Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, Philadelphia (1990)zbMATHGoogle Scholar
- 50.Clarke, F.H., Stern, R.J., Ledyaev, Yu.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)zbMATHGoogle Scholar
- 51.Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp 155–270. Academic, New York (1996)Google Scholar
- 52.Combettes, P.L., Pesquet, J.-C.: Proximal splitting method in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 185–212. Springer, Berlin (2011)Google Scholar
- 53.Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67(3), 487–507 (1990)zbMATHMathSciNetGoogle Scholar
- 54.Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. SIAM J. Multiscale Model. Simulat. 4(4), 1168–1200 (2005)zbMATHMathSciNetGoogle Scholar
- 55.Combettes, P.L., D\(\tilde{\mbox{u}}\)ng, D., V\(\tilde{\mbox{u}}\), B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)Google Scholar
- 56.Dacunha-Castelle, D., Gamboa, F.: Maximum d’entropie et probléme des moments. l’Institut Henri Poincaré 26, 567–596 (1990)zbMATHMathSciNetGoogle Scholar
- 57.Destuynder, P., Jaoua, M., Sellami, H.: A dual algorithm for denoising and preserving edges in image processing. J. Inverse Ill-Posed Prob. 15, 149–165 (2007)zbMATHMathSciNetGoogle Scholar
- 58.Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)zbMATHGoogle Scholar
- 59.Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)zbMATHMathSciNetGoogle Scholar
- 60.Eggermont, P.P.B.: Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24(6), 1557–1576 (1993)zbMATHMathSciNetGoogle Scholar
- 61.Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Elsevier, New York (1976)zbMATHGoogle Scholar
- 62.Fenchel, W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949)zbMATHMathSciNetGoogle Scholar
- 63.Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)zbMATHMathSciNetGoogle Scholar
- 64.Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–428 (1986)zbMATHMathSciNetGoogle Scholar
- 65.Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS 371, pp. 96–110. Springer-Verlag, Heidelberg (2008)Google Scholar
- 66.Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Bostan (1984)Google Scholar
- 67.Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in Mathematics, vol. 1894. Springer, New York (2007)Google Scholar
- 68.Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). Preprint. arXiv:1212.3349v2 [math.OC]Google Scholar
- 69.Hesse, R., Luke, D.R., Neumann, P.: Projection Methods for Sparse Affine Feasibility: Results and Counterexamples (2013). Preprint. arXiv:1307.2009 [math.OC]Google Scholar
- 70.Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)zbMATHMathSciNetGoogle Scholar
- 71.Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, I and II. Grundlehren der mathematischen Wissenschaften, vols. 305–306. Springer, New York (1993)Google Scholar
- 72.Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren der mathematischen Wissenschaften. Springer, New York (2001)zbMATHGoogle Scholar
- 73.Iusem, A.N., Teboulle, M.: A regularized dual-based iterative method for a class of image reconstruction problems. Inverse Probl. 9, 679–696 (1993)zbMATHMathSciNetGoogle Scholar
- 74.Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and its Applications, vol. 36. Oxford University Press, New York (2008)Google Scholar
- 75.Klee, V.: Convexity of Cebysev sets. Math. Ann. 142, 291–304 (1961)MathSciNetGoogle Scholar
- 76.Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)Google Scholar
- 77.Levi, L.: Fitting a bandlimited signal to given points. IEEE Trans. Inform. Theory 11, 372–376 (1965)Google Scholar
- 78.Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)zbMATHMathSciNetGoogle Scholar
- 79.Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)zbMATHMathSciNetGoogle Scholar
- 80.Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics, vol. 22. Springer, New York (2006)Google Scholar
- 81.Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Alg. 16(2), 171–185 (1997)zbMATHMathSciNetGoogle Scholar
- 82.Lucet, Y.: Fast Moreau envelope computation I: numerical algorithms. Numer. Alg. 43(3), 235–249 (2006)zbMATHMathSciNetGoogle Scholar
- 83.Lucet, Y.: Hybrid symbolic-numeric algorithms for computational convex analysis. Proc. Appl. Math. Mech. 7(1), 1062301–1062302 (2007)Google Scholar
- 84.Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20(1), 216–250 (2009)zbMATHMathSciNetGoogle Scholar
- 85.Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear quadratic model for computational convex anlysis. Comput. Optim. Appl. 43(1), 95–11 (2009)zbMATHMathSciNetGoogle Scholar
- 86.Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)zbMATHGoogle Scholar
- 87.Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005)zbMATHMathSciNetGoogle Scholar
- 88.Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)zbMATHMathSciNetGoogle Scholar
- 89.Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)zbMATHMathSciNetGoogle Scholar
- 90.Maréchal, P., Lannes, A. (1997) Unification of some deterministic and probabilistic methods for the solution of inverse problems via the principle of maximum entropy on the mean. Inverse Probl. 13, 135–151 (1962)Google Scholar
- 91.Mattingley, J., Body, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng. 13, 1–27 (2012)zbMATHMathSciNetGoogle Scholar
- 92.Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)zbMATHMathSciNetGoogle Scholar
- 93.Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)Google Scholar
- 94.Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus de l’Académie des Sciences de Paris 255, 2897–2899 (1962)zbMATHMathSciNetGoogle Scholar
- 95.Moreau, J.J.: Proximité et dualité dans un espace Hilbertian. Bull de la Soc math de France 93(3), 273–299 (1965)zbMATHMathSciNetGoogle Scholar
- 96.Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
- 97.Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)Google Scholar
- 98.Patrinos, P., Sarimveis, H.: Convex parametric piecewise quadratic optimization: theory and algorithms. Automatica 47, 1770–1777 (2011)zbMATHMathSciNetGoogle Scholar
- 99.Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, New York (1993)Google Scholar
- 100.Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Contr. Opt. 31(4), 1080–1092 (1993)zbMATHMathSciNetGoogle Scholar
- 101.Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Pure and Applied Mathematics, vol. 4. Marcel Dekker, New York (1971). Translated from Russian by Karol Makowski. Translation edited by Lucien W. NeustadtGoogle Scholar
- 102.Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)zbMATHMathSciNetGoogle Scholar
- 103.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
- 104.Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)zbMATHMathSciNetGoogle Scholar
- 105.Rockafellar, R.T.: Integrals which are convex functionals, II. Pacific J. Math. 39, 439–469 (1971)zbMATHMathSciNetGoogle Scholar
- 106.Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)zbMATHGoogle Scholar
- 107.Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)zbMATHGoogle Scholar
- 108.Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHGoogle Scholar
- 109.Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)zbMATHGoogle Scholar
- 110.Simons, S.: From Hahn–Banach to Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, New York (2008)zbMATHGoogle Scholar
- 111.Singer, I.: Duality for Nonconvex Approximation and Optimization. Springer, New York (2006)zbMATHGoogle Scholar
- 112.Teboulle, M., Vajda, I.: Convergence of best φ-entropy estimates. IEEE Trans. Inform. Process. 39, 279–301 (1993)MathSciNetGoogle Scholar
- 113.Tihonov, A.N.: On the regularization of ill-posed problems (Russian). Dokl. Akad. Nauk. SSSR 153, 49–52 (1963)MathSciNetGoogle Scholar
- 114.Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)zbMATHMathSciNetGoogle Scholar
- 115.Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)zbMATHMathSciNetGoogle Scholar
- 116.Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)zbMATHMathSciNetGoogle Scholar
- 117.Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
- 118.Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)zbMATHGoogle Scholar
- 119.Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp 237–424. Academic, New York (1971)Google Scholar
Copyright information
© Springer Science+Business Media New York 2015