Advertisement

Duality and Convex Programming

  • Jonathan M. BorweinEmail author
  • D. Russell Luke

Abstract

This chapter surveys key concepts in convex duality theory and their application to the analysis and numerical solution of problem archetypes in imaging. Convex analysis, Variational analysis, Duality

Notes

Acknowledgements

D. Russell Luke’s work was supported in part by NSF grants DMS-0712796 and DMS-0852454. Work on the second edition was supported by DFG grant SFB755TPC2. The authors wish to thank Matthew Tam for his assistance in preparing a revision for the second edition of the handbook.

References

  1. 1.
    Alves, M., Svaiter, B.F.: A new proof for maximal monotonicity of subdifferential operators. J. Convex Anal. 15(2), 345–348 (2008)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aragón Artacho, F.J., Borwein, J.M.: Global convergence of a non-convex Douglas–Rachford iteration. J. Glob. Optim. 57(3), 753–769 (2013)zbMATHGoogle Scholar
  3. 3.
    Aubert, G., Kornprost, P.: Mathematical Problems Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2002)zbMATHGoogle Scholar
  4. 4.
    Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)zbMATHGoogle Scholar
  5. 5.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)zbMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm and Fienup variants: a view from convex feasibility. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002)MathSciNetGoogle Scholar
  8. 8.
    Bauschke, H.H., Combettes, P.L., Luke, D.R.: A hybrid projection reflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)Google Scholar
  9. 9.
    Bauschke, H.H., Combettes, P.L., Luke, D.R.: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory 127, 178–192 (2004)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bauschke, H.H., Cruz, J.Y., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle (2013). Preprint. arXiv:1309.4709v1 [math.OC]Google Scholar
  11. 11.
    Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and sparsity optimization with affine constraints. Found Comput. Math. 14(1), 63–83 (2014)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Bauscke, H.H., Phan, H.M., Wang, X.: The method of alternating relaxed projections for two nonconvex sets. Vietnam J. Math. (in press). doi:10.1007/510013-013-0049-8Google Scholar
  15. 15.
    Beck, A., Eldar, Y.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23, 1480–1509 (2013)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Beck, A., Teboulle, M.: A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, pp. 33–48. Springer, New York (2011)Google Scholar
  17. 17.
    Bect, J., Blanc-Féraud, L., Aubert, G., Chambolle, A.: A 1-unified variational framework for image restoration. In: Pajdla, T., Matas, J. (eds.) Proceedings of the Eighth European Conference on Computer Vision, Prague, 2004. Lecture Notes in Computer Science, vol. 3024, pp. 1–13. Springer, New York (2004)Google Scholar
  18. 18.
    Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimensional l p spectral estimation problems. SIAM J. Contr. Optim. 26, 985–996 (1988)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harm. Anal. 27, 265–274 (2009)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Blumensath, T., Davies, M.E.: Normalised iterative hard thresholding: guaranteed stability and performance. IEEE J. Sel. Top. Sign. Process. 4, 298–309 (2010)Google Scholar
  21. 21.
    Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  22. 22.
    Borwein, J.M.: On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems. Math. Program 61, 251–261 (1993)zbMATHGoogle Scholar
  23. 23.
    Borwein, J.M., Hamilton, C.: Symbolic fenchel conjugation. Math. Program 116, 17–35 (2009)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Borwein, J.M., Jon Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedias in Mathematics, vol. 109. Cambridge University Press, New York (2009)Google Scholar
  25. 25.
    Borwein, J.M., Lewis, A.S.: Duality relationships for entropy-like minimization problems. SIAM J. Contr. Optim. 29, 325–338 (1990)MathSciNetGoogle Scholar
  26. 26.
    Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optim. 1, 191–205 (1991)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples, 2nd edn. Springer, New York (2006)Google Scholar
  28. 28.
    Borwein, J.M., Luke, D.R.: Entropic regularization of the 0 function. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 65–92. Springer, Berlin (2011)Google Scholar
  29. 29.
    Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 93–109. Springer, Berlin (2011)Google Scholar
  30. 30.
    Borwein, J.M., Tam, M.K.: A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0381-xGoogle Scholar
  31. 31.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. CMS Books in Mathematics. Springer, New York (2005)zbMATHGoogle Scholar
  32. 32.
    Borwein, J.M., Zhu, Q.J.: Variational methods in the presence of symmetry. Adv. Nonlinear Anal. 2(3), 271–307 (2013)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Borwein, J.M., Lewis, A.S., Limber, M.N., Noll, D.: Maximum entropy spectral analysis using first order information. Part 2: a numerical algorithm for fisher information duality. Numer. Math. 69, 243–256 (1995)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Borwein, J.M., Lewis, A.S., Noll, D.: Maximum entropy spectral analysis using first order information. Part 1: fisher information and convex duality. Math. Oper. Res. 21, 442–468 (1996)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Oxford University Press, New York (2003)Google Scholar
  36. 36.
    Brezhneva, O.A., Tret’yakov, A.A., Wright, S.E.: A simple and elementary proof of the Karush–Kuhn–Tucker theorem for inequality-constrained optimization. Optim. Lett. 3, 7–10 (2009)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Burg, J.P.: Maximum entropy spectral analysis. Paper presented at the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City (1967)Google Scholar
  38. 38.
    Burke, J.V., Luke, D.R.: Variational analysis applied to the problem of optical phase retrieval. SIAM J. Contr. Optim. 42(2), 576–595 (2003)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Byrne, C.L.: Signal Processing: A Mathematical Approach. AK Peters, Natick (2005)Google Scholar
  40. 40.
    Candés, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Candés, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory Algorithms and Applications. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  43. 43.
    Chambolle, A.: An algorithm for total variation minimization and applications. J Math. Imaging Vis. 20, 89–97 (2004)MathSciNetGoogle Scholar
  44. 44.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)zbMATHMathSciNetGoogle Scholar
  46. 46.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal–dual method for total variation based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)zbMATHMathSciNetGoogle Scholar
  47. 47.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1999)zbMATHMathSciNetGoogle Scholar
  48. 48.
    Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Convex and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 139–169. Springer, New York (2012)Google Scholar
  49. 49.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, Philadelphia (1990)zbMATHGoogle Scholar
  50. 50.
    Clarke, F.H., Stern, R.J., Ledyaev, Yu.S., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)zbMATHGoogle Scholar
  51. 51.
    Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp 155–270. Academic, New York (1996)Google Scholar
  52. 52.
    Combettes, P.L., Pesquet, J.-C.: Proximal splitting method in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and its Applications, vol. 49, pp. 185–212. Springer, Berlin (2011)Google Scholar
  53. 53.
    Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67(3), 487–507 (1990)zbMATHMathSciNetGoogle Scholar
  54. 54.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. SIAM J. Multiscale Model. Simulat. 4(4), 1168–1200 (2005)zbMATHMathSciNetGoogle Scholar
  55. 55.
    Combettes, P.L., D\(\tilde{\mbox{u}}\)ng, D., V\(\tilde{\mbox{u}}\), B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)Google Scholar
  56. 56.
    Dacunha-Castelle, D., Gamboa, F.: Maximum d’entropie et probléme des moments. l’Institut Henri Poincaré 26, 567–596 (1990)zbMATHMathSciNetGoogle Scholar
  57. 57.
    Destuynder, P., Jaoua, M., Sellami, H.: A dual algorithm for denoising and preserving edges in image processing. J. Inverse Ill-Posed Prob. 15, 149–165 (2007)zbMATHMathSciNetGoogle Scholar
  58. 58.
    Deutsch, F.: Best Approximation in Inner Product Spaces. CMS Books in Mathematics. Springer, New York (2001)zbMATHGoogle Scholar
  59. 59.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)zbMATHMathSciNetGoogle Scholar
  60. 60.
    Eggermont, P.P.B.: Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24(6), 1557–1576 (1993)zbMATHMathSciNetGoogle Scholar
  61. 61.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Elsevier, New York (1976)zbMATHGoogle Scholar
  62. 62.
    Fenchel, W.: On conjugate convex functions. Can. J. Math. 1, 73–77 (1949)zbMATHMathSciNetGoogle Scholar
  63. 63.
    Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)zbMATHMathSciNetGoogle Scholar
  64. 64.
    Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–428 (1986)zbMATHMathSciNetGoogle Scholar
  65. 65.
    Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS 371, pp. 96–110. Springer-Verlag, Heidelberg (2008)Google Scholar
  66. 66.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Integral Equations of the First Kind. Pitman, Bostan (1984)Google Scholar
  67. 67.
    Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in Mathematics, vol. 1894. Springer, New York (2007)Google Scholar
  68. 68.
    Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). Preprint. arXiv:1212.3349v2 [math.OC]Google Scholar
  69. 69.
    Hesse, R., Luke, D.R., Neumann, P.: Projection Methods for Sparse Affine Feasibility: Results and Counterexamples (2013). Preprint. arXiv:1307.2009 [math.OC]Google Scholar
  70. 70.
    Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)zbMATHMathSciNetGoogle Scholar
  71. 71.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms, I and II. Grundlehren der mathematischen Wissenschaften, vols. 305–306. Springer, New York (1993)Google Scholar
  72. 72.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren der mathematischen Wissenschaften. Springer, New York (2001)zbMATHGoogle Scholar
  73. 73.
    Iusem, A.N., Teboulle, M.: A regularized dual-based iterative method for a class of image reconstruction problems. Inverse Probl. 9, 679–696 (1993)zbMATHMathSciNetGoogle Scholar
  74. 74.
    Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and its Applications, vol. 36. Oxford University Press, New York (2008)Google Scholar
  75. 75.
    Klee, V.: Convexity of Cebysev sets. Math. Ann. 142, 291–304 (1961)MathSciNetGoogle Scholar
  76. 76.
    Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)Google Scholar
  77. 77.
    Levi, L.: Fitting a bandlimited signal to given points. IEEE Trans. Inform. Theory 11, 372–376 (1965)Google Scholar
  78. 78.
    Lewis, A.S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33, 216–234 (2008)zbMATHMathSciNetGoogle Scholar
  79. 79.
    Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence of alternating and averaged projections. Found. Comput. Math. 9(4), 485–513 (2009)zbMATHMathSciNetGoogle Scholar
  80. 80.
    Lucchetti, R.: Convexity and Well-Posed Problems. CMS Books in Mathematics, vol. 22. Springer, New York (2006)Google Scholar
  81. 81.
    Lucet, Y.: Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Alg. 16(2), 171–185 (1997)zbMATHMathSciNetGoogle Scholar
  82. 82.
    Lucet, Y.: Fast Moreau envelope computation I: numerical algorithms. Numer. Alg. 43(3), 235–249 (2006)zbMATHMathSciNetGoogle Scholar
  83. 83.
    Lucet, Y.: Hybrid symbolic-numeric algorithms for computational convex analysis. Proc. Appl. Math. Mech. 7(1), 1062301–1062302 (2007)Google Scholar
  84. 84.
    Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20(1), 216–250 (2009)zbMATHMathSciNetGoogle Scholar
  85. 85.
    Lucet, Y., Bauschke, H.H., Trienis, M.: The piecewise linear quadratic model for computational convex anlysis. Comput. Optim. Appl. 43(1), 95–11 (2009)zbMATHMathSciNetGoogle Scholar
  86. 86.
    Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)zbMATHGoogle Scholar
  87. 87.
    Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 21, 37–50 (2005)zbMATHMathSciNetGoogle Scholar
  88. 88.
    Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)zbMATHMathSciNetGoogle Scholar
  89. 89.
    Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)zbMATHMathSciNetGoogle Scholar
  90. 90.
    Maréchal, P., Lannes, A. (1997) Unification of some deterministic and probabilistic methods for the solution of inverse problems via the principle of maximum entropy on the mean. Inverse Probl. 13, 135–151 (1962)Google Scholar
  91. 91.
    Mattingley, J., Body, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng. 13, 1–27 (2012)zbMATHMathSciNetGoogle Scholar
  92. 92.
    Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)zbMATHMathSciNetGoogle Scholar
  93. 93.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren der mathematischen Wissenschaften. Springer, New York (2006)Google Scholar
  94. 94.
    Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus de l’Académie des Sciences de Paris 255, 2897–2899 (1962)zbMATHMathSciNetGoogle Scholar
  95. 95.
    Moreau, J.J.: Proximité et dualité dans un espace Hilbertian. Bull de la Soc math de France 93(3), 273–299 (1965)zbMATHMathSciNetGoogle Scholar
  96. 96.
    Nesterov, Y.E., Nemirovskii, A.S.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  97. 97.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)Google Scholar
  98. 98.
    Patrinos, P., Sarimveis, H.: Convex parametric piecewise quadratic optimization: theory and algorithms. Automatica 47, 1770–1777 (2011)zbMATHMathSciNetGoogle Scholar
  99. 99.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, New York (1993)Google Scholar
  100. 100.
    Potter, L.C., Arun, K.S.: A dual approach to linear inverse problems with convex constraints. SIAM J. Contr. Opt. 31(4), 1080–1092 (1993)zbMATHMathSciNetGoogle Scholar
  101. 101.
    Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Pure and Applied Mathematics, vol. 4. Marcel Dekker, New York (1971). Translated from Russian by Karol Makowski. Translation edited by Lucien W. NeustadtGoogle Scholar
  102. 102.
    Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966)zbMATHMathSciNetGoogle Scholar
  103. 103.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  104. 104.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)zbMATHMathSciNetGoogle Scholar
  105. 105.
    Rockafellar, R.T.: Integrals which are convex functionals, II. Pacific J. Math. 39, 439–469 (1971)zbMATHMathSciNetGoogle Scholar
  106. 106.
    Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)zbMATHGoogle Scholar
  107. 107.
    Rockafellar, R.T., Wets, R.J.: Variational Analysis. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1998)zbMATHGoogle Scholar
  108. 108.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHGoogle Scholar
  109. 109.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)zbMATHGoogle Scholar
  110. 110.
    Simons, S.: From Hahn–Banach to Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, New York (2008)zbMATHGoogle Scholar
  111. 111.
    Singer, I.: Duality for Nonconvex Approximation and Optimization. Springer, New York (2006)zbMATHGoogle Scholar
  112. 112.
    Teboulle, M., Vajda, I.: Convergence of best φ-entropy estimates. IEEE Trans. Inform. Process. 39, 279–301 (1993)MathSciNetGoogle Scholar
  113. 113.
    Tihonov, A.N.: On the regularization of ill-posed problems (Russian). Dokl. Akad. Nauk. SSSR 153, 49–52 (1963)MathSciNetGoogle Scholar
  114. 114.
    Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)zbMATHMathSciNetGoogle Scholar
  115. 115.
    Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 1030–1051 (2006)zbMATHMathSciNetGoogle Scholar
  116. 116.
    Weiss, P., Aubert, G., Blanc-Féraud, L.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31, 2047–2080 (2009)zbMATHMathSciNetGoogle Scholar
  117. 117.
    Wright, S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  118. 118.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)zbMATHGoogle Scholar
  119. 119.
    Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (ed.) Contributions to Nonlinear Functional Analysis, pp 237–424. Academic, New York (1971)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of NewcastleNewcastleAustralia
  2. 2.Institute of Numerical and Applied MathematicsGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations