Encyclopedia of Machine Learning and Data Mining

2017 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Evolutionary Robotics

  • Phil HusbandsEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7687-1_94


Evolutionary robotics uses evolutionary search methods to fully or partially design robotic systems, including their control systems and sometimes their morphologies and sensor/actuator properties. Such methods are used in a range of ways from the fine-tuning or optimization of established designs to the creation of completely novel designs. There are many applications of evolutionary robotics from wheeled to legged to swimming to flying robots. A particularly active area is the use of evolutionary robotics to synthesize embodied models of complete agent behaviors in order to help explore and generate hypotheses in neurobiology and cognitive science.

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. Beer RD (2003) The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adapt Behav 11(4): 209–243CrossRefGoogle Scholar
  2. Beer RD, Chiel HJ, Sterling LS (1989) Heterogeneous neural networks for adaptive behavior in dynamic environments. In: Touretzky D (ed) Neural information processing systems, vol 1. Morgan Kauffman, San Francisco, pp 577–585Google Scholar
  3. Beer RD, Gallagher JC (1992) Evolving dynamical neural networks for adaptive behaviour. Adapt Behav 1:94–110CrossRefGoogle Scholar
  4. Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically-inspired approaches to robotics. Commun ACM 40(3):30–38CrossRefGoogle Scholar
  5. Bongard J (2011) Morphological change in machines accelerates the evolution of robust behavior. Proc Natl Acad Sci 108(4):1234–1239CrossRefGoogle Scholar
  6. Bongard J, Zykov V, Lipson H (2006) Resilient machines through continuous self-modeling. Science 314:1118–1121CrossRefGoogle Scholar
  7. Cliff D, Harvey I, Husbands P (1993) Explorations in evolutionary robotics. Adapt Behav 2:73–110CrossRefGoogle Scholar
  8. de Garis H (1990) Genetic programming: evolution of time dependent neural network modules which teach a pair of stick legs to walk. In: Proceedings of the 9th European conference on artificial intelligence, Stockholm, pp 204–206Google Scholar
  9. De Jong KA (2006) Evolutionary computation: a unified approach. MIT Press, CambridgezbMATHGoogle Scholar
  10. Di Paolo E (1998) An investigation into the evolution of communication. Adapt Behav 6(2):285–324CrossRefGoogle Scholar
  11. Di Paolo EA (2003) Evolving spike-timing dependent plasticity for single-trial learning in robots. Philos Trans R Soc A 361:2299–2319MathSciNetCrossRefGoogle Scholar
  12. Doncieux S, Bredeche N, Mouret J-B (eds) (2011) New Horizons in evolutionary robotics: extended contributions from the 2009 EvoDeRob workshop. Studies in computational intelligence, vol 341. Springer, BerlinGoogle Scholar
  13. Eiben AE (2014) Grand challenges for evolutionary robotics. Front Robot AI 1(4). doi:10.3389/frobt.2014.00004Google Scholar
  14. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, BerlinzbMATHCrossRefGoogle Scholar
  15. Floreano D, Hauert S, Leven S, Zufferey JC (2007) Evolutionary swarms of flying robots. In: Floreano D (ed) Proceedings of the international symposium on flying insects and robots. EPFL, Monte Verita, pp 35–36Google Scholar
  16. Floreano D, Husbands P, Nolfi S (2008) Evolutionary robotics. In: Siciliano B, Khatib O (eds) Springer handbook of robotics (Chap. 61). Springer, Berlin, pp 1423–1451Google Scholar
  17. Floreano D, Mitri S, Magnenat S, Keller L (2007) Evolutionary conditions for the emergence of communication in robots. Curr Biol 17:514–519CrossRefGoogle Scholar
  18. Floreano D, Mondada F (1994) Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot. In: Cliff D, Husbands P, Meyer J, Wilson SW (eds) From animals to animats III: proceedings of the third international conference on simulation of adaptive behavior. MIT Press-Bradford Books, Cambridge, pp 402–410Google Scholar
  19. Floreano D, Nolfi S (1997) Adaptive behavior in competing co-evolving species. In: Husbands P, Harvey I (eds) Proceedings of the 4th European conference on artificial life. MIT Press, Cambridge, pp 378–387Google Scholar
  20. Floreano D, Urzelai J (2000) Evolutionary robots with on-line self-organization and behavioral fitness. Neural Netw 13(4–5):431–443CrossRefGoogle Scholar
  21. Gallagher J, Beer R, Espenschiel M, Quinn R (1996) Application of evolved locomotion controllers to a hexapod robot. Robot Auton Syst 19(1):95–103CrossRefGoogle Scholar
  22. Gruau F (1995) Automatic definition of modular neural networks. Adapt Behav 3(2):151–183CrossRefGoogle Scholar
  23. Gruau F, Quatramaran K (1997) Cellular encoding for interactive evolutionary robotics. In: Husbands P, Harvey I (eds) Proceedings of the 4th European conference on artificial life. The MIT Press/Bradford Books, CambridgeGoogle Scholar
  24. Harvey I, Di Paolo E, Wood R, Quinn M, Tuci E (2005) Evolutionary robotics: a new scientific tool for studying cognition. Artif Life 11(1–2):79–98CrossRefGoogle Scholar
  25. Harvey I, Husbands P, Cliff DT (1994) Seeing the light: artificial evolution, real vision. In: Cliff DT, Husbands P, Meyer JA, Wilson S (eds) From animals to animats 3: proceedings of the third international conference on simulation of adaptive behaviour, SAB94. MIT Press, Cambridge, pp 392–401Google Scholar
  26. Harvey I, Husbands P, Cliff D, Thompson A, Jakobi N (1997) Evolutionary robotics: the Sussex approach. Robot Auton Syst 20:205–224CrossRefGoogle Scholar
  27. Hobbs J, Husbands P, Harvey I (1996) Achieving improved mission robustness. In: 4th European Space Agency workshop on advanced space technologies for robot applications – ASTRA’96, Noordwijk, The Netherlands ESTECGoogle Scholar
  28. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  29. Husbands P, Harvey I (1992) Evolution versus design: controlling autonomous mobile robots. In: Proceedings of 3rd annual conference on artificial intelligence, simulation and planning in high autonomy systems. Computer Society Press, Los Alimitos, pp 139–146Google Scholar
  30. Husbands P, Moioli R, Shim Y, Philippides A, Vargas P, O’Shea M (2014) Evolutionary robotics and neuroscience. In: Vargas P, Di Paolo E, Harvey I, Husbands P (eds.) The horizons of evolutionary robotics. MIT Press, Cambridge, pp 17–63Google Scholar
  31. Jakobi N (1998a) Evolutionary robotics and the radical envelope of noise hypothesis. Adapt Behav 6:325–368CrossRefGoogle Scholar
  32. Jakobi N (1998b) Running across the reality gap: octopod locomotion evolved in a minimal simulation. In: Husbands P, Meyer JA (eds) Evolutionary robotics: first European workshop, EvoRobot98. Springer, Berlin, pp 39–58CrossRefGoogle Scholar
  33. Jakobi N, Husbands P, Harvey I (1995) Noise and the reality gap: the use of simulations in evolutionary robotics. In: Moran F et al (eds) Proceedings of 3rd European conference on artificial life. Springer, Berlin, pp 704–720Google Scholar
  34. Johnson C, Philippides A, Husbands P (2014) Active shape discrimination with physical reservoir computers. In: Proceedings of Alife 14. MIT Press, Cambridge, pp 178–185Google Scholar
  35. Lewis MA, Fagg AH, Solidum A (1992) Genetic programming approach to the construction of a neural network for a walking robot. In: Proceedings of IEEE international conference on robotics and automation. IEEE Press, Washington, pp 2618–2623Google Scholar
  36. Lipson H, Pollack J (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978CrossRefGoogle Scholar
  37. Mondada F, Franzi E, Ienne P (1993) Mobile robot miniaturization: a tool for investigation in control algorithms. In: Yoshikawa T, Miyazaki F (eds) Proceedings of the third international symposium on experimental robotics. Springer, Berlin, pp 501–513Google Scholar
  38. Mouret J-B, Doncieux S (2012) Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol Comput 20(1):91–133CrossRefGoogle Scholar
  39. Nolfi S, Floreano D (2000) Evolutionary robotics: the biology. In: Intelligence, and technology of self-organizing machines. MIT Press/Bradford Books, CambridgeGoogle Scholar
  40. Parisi D, Nolfi S (1993) Neural network learning in an ecological and evolutionary context. In: Roberto V (ed) Intelligent perceptual systems. Springer, Berlin, pp 20–40CrossRefGoogle Scholar
  41. Pfeifer R, Bongard J (2007) How the body shapes the way we think: a new view of intelligence. MIT Press, CambridgeGoogle Scholar
  42. Philippides A, Husbands P, Smith T, O’Shea M (2005) Flexible couplings: diffusing neuromodulators and adaptive robotics. Artif Life 11(1&2):139–160CrossRefGoogle Scholar
  43. Quinn M (2001) Evolving communication without dedicated communication channels. In: Kelemen J, Sosik P (eds) Proceedings of the 6th European conference on artificial life, ECAL’01. Springer, Berlin, pp 357–366Google Scholar
  44. Quinn M, Smith L, Mayley G, Husbands P (2003) Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 361:2321–2344MathSciNetCrossRefGoogle Scholar
  45. Reil T, Husbands P (2002) Evolution of central pattern generators for bipedal walking in real-time physics environments. IEEE Trans Evol Comput 6(2): 10–21CrossRefGoogle Scholar
  46. Seth AK (2005) Causal connectivity analysis of evolved neural networks during behavior. Netw Comput Neural Syst 16(1):35–54CrossRefGoogle Scholar
  47. Shim YS, Husbands P (2007) Feathered flyer: integrating morphological computation and sensory reflexes into a physically simulated flapping-wing robot for robust flight Manoeuvre. In: Proceedings of ECAL. LNCS, vol 4648. Springer, Berlin, pp 756–765Google Scholar
  48. Sims K (1994) Evolving 3D morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of artificial life IV. MIT Press, Cambridge, pp 28–39Google Scholar
  49. Stanley K, D’Ambrosio D, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural networks. Artif Life 15(2):185–212CrossRefGoogle Scholar
  50. Tllez R, Angulo C, Pardo D (2006) Evolving the walking behaviour of a 12 DOF quadruped using a distributed neural architecture. In: 2nd international workshop on biologically inspired approaches to advanced information technology (Bio-ADIT’2006). LNCS, vol 385. Springer, Berlin, pp 5–19Google Scholar
  51. Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460MathSciNetCrossRefGoogle Scholar
  52. Urzelai J, Floreano D (2001) Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Evol Comput 9:495–524zbMATHCrossRefGoogle Scholar
  53. Vargas P, Di Paolo E, Harvey I, Husbands P (2014) The horizons of evolutionary robotics. MIT Press, CambridgeGoogle Scholar
  54. Vaughan E, Di Paolo EA, Harvey I (2004) The evolution of control and adaptation in a 3D powered passive dynamic walker. In: Pollack J, Bedau M, Husbands P, Ikegami T, Watson R (eds) Proceedings of the ninth international conference on the simulation and synthesis of living systems artificial life IX. MIT Press, Cambridge, pp 139–145Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Informatics, Centre for Computational Neuroscience and RoboticsUniversity of SussexBrightonUK