Encyclopedia of Machine Learning and Data Mining

Editors: Claude Sammut, Geoffrey I. Webb

K-Means Clustering

DOI: https://doi.org/10.1007/978-1-4899-7687-1_431


K-Means Clustering is a popular clustering algorithm with local optimization. In order to improve its performance, researchers have proposed methods for better initialization and faster computation.

This is a preview of subscription access content, login to check access

Recommended Reading

  1. Bei C-D, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans Commun 33:1132–1133CrossRefGoogle Scholar
  2. Beil F, Ester M, Xu X (2003) Using the triangle inequality to accelerate k-means. In: Twentieth international conference on machine learning (ICML’03), Washington, DC, pp 147–153Google Scholar
  3. Chen S-H, Hsieh WM (1991) Fast algorithm for VQ codebook design. In: IEE Proceedings I-Communications, Speech and Vision, 138(5):357–362CrossRefGoogle Scholar
  4. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18CrossRefGoogle Scholar
  5. Jin X, Kim S, Han J, Cao L, Yin Z (2011) A general framework for efficient clustering of large datasets based on activity detection. Stat Anal Data Min 4(1):11–29MathSciNetCrossRefGoogle Scholar
  6. Kaukoranta T, Franti P, Nevalainen O (2000) A fast exact gla based code vector activity detection. IEEE Trans Image Process 9(8):1337–1342CrossRefGoogle Scholar
  7. Lai JZC et al (2008) A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognit 41(1):315–319CrossRefMATHGoogle Scholar
  8. Lloyd SP (1957) Least squares quantization in pcm. Technical report RR-5497, Bell Lab, Sept 1957MATHGoogle Scholar
  9. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297Google Scholar
  10. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: CVPR06, New YorkGoogle Scholar
  11. Pelleg D, Moore A (1999) Accelerating exact k-means algorithms with geometric reasoning. In: Proceedings of KDD’99, New York. ACM, pp 277–281Google Scholar
  12. Ra S-W, Kim J-K (1993) A fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE Trans Circuits Syst 40:576–579CrossRefGoogle Scholar
  13. Steinley D, Brusco MJ (2007) Initializing k-means batch clustering: a critical evaluation of several techniques. J Classif 24(1):99–121MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.PayPal Inc.San JoseUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA