Encyclopedia of Biometrics

2015 Edition
| Editors: Stan Z. Li, Anil K. Jain

Psychology of Gait and Action Recognition

  • Frank E. Pollick
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7488-4_34


Action categorization; Action understanding; Biological motion perception


The psychology of gait and action recognition strives to understand the processes that underlie how people detect, recognize, and understand the movements of others. Since gait is a fundamental human activity, it has formed an important visual signal for psychologists to examine. Experiments have shown that sparse representations of gait support the recognition of identity, gender, and emotion by observers even when viewing conditions are degraded. The study of gait and action recognition focuses on several questions, including the following: what visual properties uniquely specify human movement, how to quantify human performance in action recognition, and the neural mechanisms that form the basis of decoding human movement.


The modern study of the psychology of human movement, in particular the perception of gait, starts with the work of the Swedish Psychologist Gunnar...
This is a preview of subscription content, log in to check access.


  1. 1.
    G. Johansson, Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)CrossRefGoogle Scholar
  2. 2.
    R. Blake, M. Shiffrar, Perception of human motion. Ann. Rev. Psychol. 58, 47–73 (2007)CrossRefGoogle Scholar
  3. 3.
    S. Ullman, The Interpretation of Visual Motion (MIT, Cambridge, 1979)Google Scholar
  4. 4.
    E. Hiris, D. Humphrey, A. Stout, Temporal properties in masking biological motion. Percept. Psychophys. 67(3), 435–443 (2005)CrossRefGoogle Scholar
  5. 5.
    H. Lu, Z. Liu, Computing dynamic classification images from correlation maps. J. Vis. 6(4), 475–483 (2006)CrossRefGoogle Scholar
  6. 6.
    I.M. Thornton, J. Pinto, M. Shiffrar, The visual perception of human locomotion. Cognit. Neuropsychol. 15(6–8), 535–552 (1998)CrossRefGoogle Scholar
  7. 7.
    G. Mather, K. Radford, S. West, Low-level visual processing of biological motion. Proc. R. Soc. Lond. B Biol. Sci. 249(1325), 149–155 (1992)CrossRefGoogle Scholar
  8. 8.
    P. Neri, M.C. Morrone, D.C. Burr, Seeing biological motion. Nature 395(6705), 894–896 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Pavlova, A. Sokolov, Prior knowledge about display inversion in biological motion perception. Perception 32(8), 937–946 (2003)CrossRefGoogle Scholar
  10. 10.
    T.F. Shipley, The effect of object and event orientation on perception of biological motion. Psychol. Sci. 14(4), 377–380 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Shipley, J. Zacks (eds.), Understanding Events: How Humans See, Represent, and Act on Events (Oxford University Press, Oxford, 2008)Google Scholar
  12. 12.
    S. Stevenage, M. Nixon, K. Vince, Visual analysis of gait as a cue to identity. Appl. Cognit. Psychol. 13, 469–474 (1999)CrossRefGoogle Scholar
  13. 13.
    F. Loula, S. Prasad, K. Harber, M. Shiffrar, Recognizing people from their movement. J. Exp. Psychol. Hum. Percept. Perform. 31, 210–220 (2005)CrossRefGoogle Scholar
  14. 14.
    N.F. Troje, C. Westhoff, M. Lavrov, Person identification from biological motion: effects of structural and kinematic cues. Percept. Psychophys. 67, 667–675 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Cutting, L. Kozlowski, Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9, 353–356 (1977)CrossRefGoogle Scholar
  16. 16.
    N.F. Troje, C. Westhoff, M. Lavrov, Person identification from biological motion: effects of structural and kinematic cues. Percept. Psychophys. 67(4), 667–675 (2005)CrossRefGoogle Scholar
  17. 17.
    R.E. Gunns, L. Johnson, S.M. Hudson, Victim selection and kinematics: a point-light investigation of vulnerability to attack. J. Nonverbal Behav. 26(3), 129–158Google Scholar
  18. 18.
    B. Abernethy, D.P. Gill, S.L. Parks, S.T. Packer, Expertise and the perception of kinematic and situational probability information. Perception 30(2), 233–252 (2001)CrossRefGoogle Scholar
  19. 19.
    K.L. Johnson, L.G. Tassinary: Perceiving sex directly and indirectly – meaning in motion and morphology. Psychol. Sci. 16(11), 890–897 (2005)CrossRefGoogle Scholar
  20. 20.
    F. Pollick, V. Lestou, J. Ryu, S.B. Cho, Estimating the efficiency of recognizing gender and affect from biological motion. Vis. Res. 42(20), 2345–2355 (2002)CrossRefGoogle Scholar
  21. 21.
    J.E. Cutting, D.R. Proffitt, L.T. Kozlowski, A biomechanical invariant for gait perception. J. Exp. Psychol. Hum. Percept. Perform. 4(3), 357–372 (1978)CrossRefGoogle Scholar
  22. 22.
    F. Pollick, J. Kay, K. Heim, R. Stringer, Gender recognition from point-light walkers. J. Exp. Psychol. Hum. Percept. Perform. 31(6), 1247–1265 (2005)CrossRefGoogle Scholar
  23. 23.
    N.F. Troje, Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 371–387 (2002)CrossRefGoogle Scholar
  24. 24.
    M. Brand, A. Hertzmann, Style machines, in SIGGRAPH 2000 Conference Proceedings, New Orleans (ACM, New York, 2000), pp. 183–192Google Scholar
  25. 25.
    B.I. Bertenthal, J. Pinto, Global processing of biological motions. Psychol. Sci. 5(4), 221–225 (1994)CrossRefGoogle Scholar
  26. 26.
    E. Grossman, M. Donnelly, R. Price, D. Pickens, V. Morgan, G. Neighbor, R. Blake, Brain areas involved in perception of biological motion. J. Cognit. Neurosci. 12(5), 711–720 (2000)vCrossRefGoogle Scholar
  27. 27.
    M.W. Oram, D.I. Perrett, Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J. Cognit. Neurosci. 6(2), 99–116 (1994)CrossRefGoogle Scholar
  28. 28.
    M. Giese, T. Poggio, Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4(3), 179–192 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Lange, M. Lappe, A model of biological motion perception from configural form cues. J. Neurosci. 26(11), 2894–2906 (2006)CrossRefGoogle Scholar
  30. 30.
    J. Vangeneugden, F.E. Pollick, R. Vogels, Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. Cerebral Cortex Advance Access published on 16 July 2008Google Scholar
  31. 31.
    G. Rizzolatti, L. Craighero, The mirror-neuron system. Ann. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  32. 32.
    V. Lestou, F.E. Pollick, Z. Kourtzi, Neural substrates for action understanding at different description levels in the human brain. J. Cognit. Neurosci. 20(2), 324–341 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Frank E. Pollick
    • 1
  1. 1.Department of PsychologyUniversity of GlasgowGlasgowUK