Encyclopedia of Biometrics

2015 Edition
| Editors: Stan Z. Li, Anil K. Jain

Fusion, Sensor Level

  • Afzel Noore
  • Richa Singh
  • Mayank Vasta
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7488-4_156


Fusion, data level; Fusion, image level


Sensor level fusion combines raw biometric information that can account for interclass and intra-class variability and facilitate decision making based on the fused raw information. A typical sensor level fusion algorithm first integrates raw biometric data either obtained from different viewpoints (e.g., mosaicing several fingerprint impressions) or obtained from different sensors (e.g., multimodal biometric images). The integrated data is then processed and discriminatory biometric features are extracted for matching. This level of fusion can be operated in both verification and identification modes. Few examples of sensor level fusion are fingerprint mosaicing, multispectral face image fusion, and multimodal biometric image fusion.


The concept of biometric information fusion is motivated from classical multi-classifier systems that combine information from different sources and represent using a single entity....
This is a preview of subscription content, log in to check access.


  1. 1.
    A. Ross, K. Nandakumar, A.K. Jain, Handbook of Multibiometrics, 1st edn. (Springer, New York, 2006)Google Scholar
  2. 2.
    R. Singh, M. Vatsa, A. Ross, A. Noore, A mosaicing scheme for pose-invariant face recognition. IEEE Trans. Syst. Man Cybern. Part B 37(5), 1212–1225 (2007)Google Scholar
  3. 3.
    N.K. Ratha, J.H. Connell, R.M. Bolle, Image mosaicing for rolled fingerprint construction, in Proceedings of International Conference on Pattern Recognition, Brisbane, 1998, pp. 1651–1653Google Scholar
  4. 4.
    A. Jain, A. Ross, Fingerprint mosaicking, in Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Orlando, 2002, pp. 4064–4067Google Scholar
  5. 5.
    A. Ross, S. Shah, J. Shah, Image versus feature mosaicing: a case study in fingerprints, in Proceedings of SPIE Conference on Biometric Technology for Human Identification III, Orlando, 2006, pp. 620,208-1–620,208-12Google Scholar
  6. 6.
    F. Yang, M. Paindavoine, H. Abdi, A. Monopoly, Development of a fast panoramic face mosaicing and recognition system. Opt. Eng. 44(8), 087 005/1–087 005/10 (2005)Google Scholar
  7. 7.
    X. Lu, A.K. Jain, Pose-robust face recognition using geometry assisted probabilistic modeling, in Proceedings of International Conference on Computer Vision and Pattern Recognition, San Diego, 2005, pp. 502–509Google Scholar
  8. 8.
    S. Kong, J. Heo, B. Abidi, J. Paik, A. Mongi, Recent advances in visual and infrared face recognition – a review. Comput. Vis. Image Underst. 97(1), 103–135 (2005)Google Scholar
  9. 9.
    G. Bebis, A. Gyaourova, S. Singh, I. Pavlidis, Face recognition by fusing thermal infrared and visible imagery. Image Vis. Comput. 24(7), 727–742 (2006)Google Scholar
  10. 10.
    S. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. Abidi, A. Koschan, M. Yi, A. Mongi, Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition. Int. J. Comput. Vis. 71(2), 215–233 (2007)Google Scholar
  11. 11.
    R. Singh, M. Vatsa, A. Noore, Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition. Pattern Recognit. 41(3), 880–893 (2008)zbMATHGoogle Scholar
  12. 12.
    X. Lu, A.K. Jain, Integrating range and texture information for 3D face recognition, in Proceedings of Workshop on Applications of Computer Vision, Breckenridge, 2005, pp. 156–163Google Scholar
  13. 13.
    X.Y. Jing, Y.F. Yao, D. Zhang, J.Y. Yang, M. Li, Face and palmprint pixel level fusion and Kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recognit. 40(11), 3209–3224 (2007)zbMATHGoogle Scholar
  14. 14.
    A. Noore, R. Singh, M. Vatsa, Robust memory efficient data level information fusion of multi-modal biometric images. Inf. Fusion 8(4), 337–346 (2007)Google Scholar
  15. 15.
    M. Vatsa, R. Singh, A. Noore, Unification of evidence theoretic fusion algorithms: a case study in level-2 and level-3 fingerprint features, in Proceedings of IEEE International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC, 2007, pp. 1–6Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Afzel Noore
    • 1
  • Richa Singh
    • 2
  • Mayank Vasta
    • 3
  1. 1.West Virginia UniversityMorgantownUSA
  2. 2.Image Analysis and Biometrics Lab, IIIT-DelhiNew DelhiIndia
  3. 3.Image Analysis and Biometrics Lab, IIIT-DelhiNew DelhiIndia