Encyclopedia of Biometrics

2015 Edition
| Editors: Stan Z. Li, Anil K. Jain

Signature Features

  • Marcos Martinez-Diaz
  • Julian Fierrez
  • Seiichiro Hangai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7488-4_139


Signature characteristics


Signature features represent magnitudes that are extracted from digitized signature samples, with the aim of describing each signature as a vector of values. The extraction and selection of optimum signature features is a crucial step when designing a verification system. Features must allow each signature to be described in a way that the discriminative power between signatures produced by different users is maximized while allowing variability among signatures from the same user.

Online signature features can be divided into two main types. Global features model the signature as a holistic multidimensional vector and represent magnitudes such as average speed, total duration, and aspect ratio. On the other hand, local features are time functions derived from the signals, such as the pen-position coordinate sequence or pressure signals, captured with digitizing tablets or touch screens.

In off-line signature verification systems, features...

This is a preview of subscription content, log in to check access.


  1. 1.
    R. Plamondon, G. Lorette, Automatic signature verification and writer identification: the state of the art. Pattern Recogn. 22(2), 107–131 (1989)Google Scholar
  2. 2.
    H. Lei, V. Govindaraju, A comparative study on the consistency of features in on-line signature verification. Pattern Recogn. Lett. 26(15), 2483–2489 (2005)Google Scholar
  3. 3.
    J. Richiardi, H. Ketabdar, A. Drygajlo, Local and global feature selection for on-line signature verification, in Proceedings of IAPR eighth International Conference on Document Analysis and Recognition, ICDAR, Seoul, 2005Google Scholar
  4. 4.
    A. Kholmatov, B. Yanikoglu, Identity authentication using improved online signature verification method. Pattern Recogn. Lett. 26(15), 2400–2408 (2005)Google Scholar
  5. 5.
    J. Fierrez, D. Ramos-Castro, J. Ortega-Garcia, J. Gonzalez-Rodriguez, HMM-based on-line signature verification: feature extraction and signature modeling. Pattern Recogn. Lett. 28(16), 2325–2334 (2007)Google Scholar
  6. 6.
    J. Fierrez-Aguilar, L. Nanni, J. Lopez-Penalba, J. Ortega-Garcia, D. Maltoni, An on-line signature verification system based on fusion of local and global information, in Proceedings of IAPR International Conference on Audio- and Video-Based Biometric Person Authentication, AVBPA, Hilton Rye Town. LNCS, vol. 3546 (Springer, 2005), pp. 523–532Google Scholar
  7. 7.
    A.K. Jain, D. Zongker, Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)Google Scholar
  8. 8.
    W. Nelson, W. Turin, T. Hastie, Statistical methods for on-line signature verification. Int. J. Pattern Recogn. Artif. Intell. 8(3), 749–770 (1994)Google Scholar
  9. 9.
    L.L. Lee, T. Berger, E. Aviczer, Reliable on-line human signature verification systems. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 643–647 (1996)Google Scholar
  10. 10.
    M. Martinez-Diaz, J. Fierrez, J. Galbally, J. Ortega-Garcia, Towards mobile authentication using dynamic signature verification: useful features and performance evaluation, in Proceedings International Conference on Pattern Recognition, ICPR, Tampa, 2008, pp. 1–6Google Scholar
  11. 11.
    J.G.A. Dolfing, E.H.L. Aarts, J.J.G.M. van Oosterhout, On-line signature verification with Hidden Markov Models, in Proceedings of the International Conference on Pattern Recognition, Brisbane. (IEEE Press, 1998), pp. 1309–1312Google Scholar
  12. 12.
    B.L. Van, S. Garcia-Salicetti, B. Dorizzi, On using the Viterbi path along with HMM likelihood information for online signature verification. IEEE Trans. Syst. Man Cybern. B 37(5), 1237–1247 (2007)Google Scholar
  13. 13.
    D. Muramatsu, T. Matsumoto, Effectiveness of pen pressure, azimuth, and altitude features for online signature verification, in Proceedings of IAPR International Conference on Biometrics, ICB, Seoul. LNCS, vol. 4642 (Springer, 2007)Google Scholar
  14. 14.
    R. Sabourin, Off-line signature verification: recent advances and perspectives, in Advances in Document Image Analysis. LNCS, vol. 1339 (Springer, Berlin/Heidelberg, 1997), pp. 84–98Google Scholar
  15. 15.
    D. Impedovo, G. Pirlo, Automatic signature verification: the state of the art. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38(5), 609–635 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marcos Martinez-Diaz
    • 1
  • Julian Fierrez
    • 2
  • Seiichiro Hangai
    • 3
  1. 1.Biometric Recognition Group – ATVS, Escuela Politecnica SuperiorUniversidad Autonoma de Madrid, Campus de CantoblancoMadridSpain
  2. 2.Universidad Autonoma de MadridMadridSpain
  3. 3.Department of Electrical EngineeringTokyo University of ScienceTokyoJapan