Albedo Feature

  • Péter KardevánEmail author
  • Henrik Hargitai
  • Angelo Zinzi
  • Francesca Esposito
Living reference work entry


An albedo feature is a region on the surface of a nonluminous celestial body (e.g., planet, moon, or small body) with distinct brightness (radiance) values or color, i.e., exhibiting observable/measurable brightness- or color-contrast relative to its surroundings. Albedo features were traditionally identified by doing spectrally integrated observation of the reflected sunlight with a telescope in the visible spectrum range of light and having adequate spatial resolution to resolve distinct parts of the surface of the object. Detection of the brightness variations is today extended to photometric (radiometric) measurements with modern satellite/spacecraft spectrophotometers or spectroradiometers at separate monochromatic wavelengths or integrated observations in other wavelength regions as well (see spectral albedo, narrowband albedo, and broadband albedo). Albedo features result from those brightness variations, that are due to variations of the reflective properties (often...


Dust Storm Surface Albedo Celestial Body Diffuse Radiation Bidirectional Reflectance Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Barlow NG (2008) Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press, New YorkGoogle Scholar
  2. Beer W, Mädler JH (1830) Physische Beobachtungen des Mars bei seiner Opposition im September 1830. Berlin.
  3. Beer W, Madler JH (1838) Survey of the surface of the moon. Edinb New Philos J 25:38–67. (English translation, condensed)Google Scholar
  4. Beish JD (1999) Discrete topographic and orographic clouds of Mars. Association of Lunar and Planetary Observers.
  5. Beish JD (2011) Surface features of Mars. In: Observing the planet Mars.
  6. Budikova D (2013) Albedo. Retrieved from
  7. Buie MW, Tholen DJ, Horne K (1992) Albedo maps of Pluto and Charon: initial mutual events results. Icarus 97:211–227CrossRefGoogle Scholar
  8. Cassidy W, Hapke B (1975) Effects of darkening processes on surfaces of airless bodies. Icarus 25(3):371–383CrossRefGoogle Scholar
  9. Christensen PR (1988) Global albedo variations on Mars: implications for active aeolian transport, deposition and erosion. J Geophys Res 93(B7):7611–7624CrossRefGoogle Scholar
  10. Christensen PR, Bandfield JL, Hamilton VE, Ruff SW, Kieffer HH et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106(E10):23823–23871CrossRefGoogle Scholar
  11. Clark BE, Hapke B, Pieters C, Britt D (2001) Asteroid space weathering and regolith evolution. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 585–599Google Scholar
  12. Clerke AM (1885[2010]) A popular history of astronomy during the nineteenth century. Cambridge University PressGoogle Scholar
  13. Coakley JA Jr (2002) Reflectance and albedo, surface. In: Holton JR, Curry JA, Pyle JA (eds): Encyclopedia of atmospheric sciences. Academic Press,1914–1923. doi:10.1016/B0-12-227090-8/00069-5Google Scholar
  14. Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT, Prockter LM, Schenk PM (2010) Tectonics of the outer planet satellites. In: Schultz RA, Watters TR (eds) Planetary tectonics. Cambridge University Press, New York, pp 264–350Google Scholar
  15. Cruikshank DP, Nelson RM (2007) A history of the exploration of Io. In: Lopes RMC, Spencer JR (eds) Io after Galileo: a new view of Jupiter’s volcanic moon. Springer Praxis, BerlinGoogle Scholar
  16. De Grenier M, Pinet PC (1995) Near-opposition Martian limb-darkening: quantification and implication for visible-near infrared bidirectional reflectance studies. Icarus 115:354–368CrossRefGoogle Scholar
  17. de Vaucouleurs G, Blunck J, Davies M, Dollfus A, Koval IK, Kuiper GP, Masursky G, Miyamoto S, Moroz VI, Sagan C, Smith B (1975) The new Martian nomenclature of the International Astronomical Union. Icarus 26:85–98CrossRefGoogle Scholar
  18. Doggett T, Greeley R, Figueredo P, Tanaka K (2009) Grologic stratigraphy and evolution of Eruopa’s surface. In: Pappalardo RT, McKinnon WB, Khurana K (eds) Europa. University of Arizona Press, TucsonGoogle Scholar
  19. Dollfus A, Chapman CR, Davies ME, Gingerich O, Goldstein R, Guest J, Morrison D, Smith BA (1978) IAU Nomenclature for albedo features on the planet Mercury. Icarus 34(1):210–214CrossRefGoogle Scholar
  20. Dumont M, Sirguey P, Arnaud Y, Six D (2011) Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps) using terrestrial photography. Cryosphere 5:759–771CrossRefGoogle Scholar
  21. Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, LondonGoogle Scholar
  22. Erard S, Mustard J, Murchie S, Bibring JP, Cerroni P, Coradini A (1994) Martian Aerosols: near-infrared spectral properties and effects on the observation of the surface. Icarus 111:317–337CrossRefGoogle Scholar
  23. Esposito F, Giuranna M, Maturilli A, Palomba E, Colangeli L, Formisano V (2007) Albedo and photometric study of Mars with the Planetary Fourier Spectrometer on-board the Mars Express mission. Icarus 186:527–546CrossRefGoogle Scholar
  24. Fenton LK, Geissler PE, Haberle RM (2007) Global warming and climate forcing by recent albedo changes on Mars. Nature 446:646–649. doi:10.1038/nature05718CrossRefGoogle Scholar
  25. Fessenkov VG (1962) Photometry of the moon. In: Kopal Z (ed) Physics and astronomy of the moon. Academic, New YorkGoogle Scholar
  26. Fimmel RO, Swindell W, Burgess E (1977) Pioneer odyssey. NASA Scientific and Technical Information Office, Washington, DCGoogle Scholar
  27. Gangale T, Dudley-Flores M (2013) Proposed additions to the cartographic database of Mars. In: Proceedings of the 26th international cartographic conference, Dresden, P2–75Google Scholar
  28. Geissler PE (2004) Three decades of Martian surface changes. Lunar Planet Sci Conf XXXV, abstract #2017, HoustonGoogle Scholar
  29. Geissler P (2005) Three decades of Martian surface changes. J Geophys Res 110:E02001. doi:10.1029/2004JE002345, 23Google Scholar
  30. Geissler PE, Mukherjee P (2010) Recent surface changes on Mars. American Geophysical Union, Fall meeting 2010 #P51B–1428Google Scholar
  31. Geissler PE, Tornabene L, Verba C, Bridges N et al (2008) HIRISE observations of Martian albedo boundaries. Lunar Planet Sci Conf XXXIX, abstract #2352, HoustonGoogle Scholar
  32. Goguen JD (1981) A theoretical and experimental investigation of the photometric functions of particulate surfaces, PhD thesis, Cornell University, IthacaGoogle Scholar
  33. Gold T (1955) The lunar surface. Mon Not R Astron Soc 115:585–604CrossRefGoogle Scholar
  34. Greenberg R (2008) Unmasking Europa. Copernicus Books, New YorkGoogle Scholar
  35. Guthnick P (1906) Resultate aus photometrischen Beobachtungen der sechs helleren Saturntrabanten. Astron Nachr 171(18):273–280, 4098CrossRefGoogle Scholar
  36. Hapke B (1981) Bidirectional reflectance spectroscopy: 1. Theory J Geophys Res 86(B4):3039–3054CrossRefGoogle Scholar
  37. Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106(E5):10039–10073CrossRefGoogle Scholar
  38. Hapke B (2012) Theory of reflectance and emittance spectroscopy, 2nd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  39. Hapke B, Cassidy W, Wells E (1975) Effects of vapor-phase deposition processes on the optical, chemical and magnetic properties of the lunar regolith. Moon 13:339–354CrossRefGoogle Scholar
  40. Harris DL (1961) Photometry and colorimetry of planets and satellites. In: Kuiper GP, Middlehurst BM (eds) Planets and satellites. University of Chicago Press, Chicago, pp 272–342Google Scholar
  41. Helfenstein P, Wilson L (1985) Photometric constraints on the emplacement and evolution of terrains on ganymede. Lunar Planet Sci XVI:339–340, HoustonGoogle Scholar
  42. Herschel JFW (1893) Outlines of astronomy. Longmans, Green and Co, LondonGoogle Scholar
  43. IAU Gazetteer (2014) Gazetteer of planetary nomenclature. International Astronomical Union, Working group for planetary system nomenclature.
  44. JPL (2007) Cassini Titan 052TI(T37) Mission description. Jet Propulsion Laboratory. 12 pGoogle Scholar
  45. Jin Z, Charlock TP, Smith Jr WL, Rutledge K (2004) A parameterization of ocean surface albedo. GEOPHYSICAL RESEARCH LETTERS, 31:L22301, doi:10.1029/2004GL021180.CrossRefGoogle Scholar
  46. Kieffer HH (1992) Mars. University of Arizona Press, TucsonGoogle Scholar
  47. Kramer GY, Besse S, Dhingra D, Nettles J, Klima R et al (2011) M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J Geophys Res 116:E00G18. doi:10.1029/2010JE003729Google Scholar
  48. Krivov VA, Hamilton DP (1997) Martian dust belts: waiting for discovery. Icarus 128:335–353CrossRefGoogle Scholar
  49. Lambert JH (1760) Photometria sive de mensura et gradibus luminis, colorum et umbrae. Viduae Eberhardi Klett, AugsburgGoogle Scholar
  50. Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51CrossRefGoogle Scholar
  51. Lee T (1971) Spectral albedos of the Galilean Satellites. Communications of the Lunar and Planetary Laboratory. 9(3) No. 168. The University of Arizona, pp 179–181Google Scholar
  52. Lee SW (1985) Seasonal and secular variation of the SOLIS Lacus albedo feature: relation to the Martian dust-transport cycle. Lunar Planet Sci XVI:483–484, HoustonGoogle Scholar
  53. Lee SW, Wolff MJ, Janes PB, Clancy RT, Bell JF, Martin LJ (1996) HST observations of Mars: time-variable Albedo in the Cerberus region American Astronomical Society, DPS meeting #28, #02.17, Bulletin of the American Astronomical Society, vol 28. p 106Google Scholar
  54. Leonard GJ, Tanaka KL (2001) Geologic map of the Hellas Region of Mars. USGS, RestonGoogle Scholar
  55. Li J-Y, McFadden LA, Thomas PC, Mutchler MJ, Parker JW, Young EF, Russell CT, Skyes MV, Schmidt BE (2010) Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope. Icarus 208:238–251CrossRefGoogle Scholar
  56. Liang S, Strahler AH, Walthall C (1999) Retrieval of land surface albedo from satellite observation: a simulation study. J Appl Meteorol 28:712–725CrossRefGoogle Scholar
  57. Lucchitta BK, Soderblom LA, Ferguson HM (1981) Structures on Europa. Lunar Planet Sci 12B:1555–1567, HoustonGoogle Scholar
  58. McCord TB, Johnson TV, Elias JH (1971) Saturn and its satellites: narrow band spectrophotometry (0.3–1.1 μm). Astrophys J 165:413–424CrossRefGoogle Scholar
  59. McEwen AS (1991) Photometric functions for photoclinometry and other applications. Icarus 92:298–311CrossRefGoogle Scholar
  60. McEwen AS, Robinson MS (1995) Global albedo variations on the Moon: clementine 750-nm observations. Lunar Planet Sci XXVI:931–932, HoustonGoogle Scholar
  61. Minnaert M (1941) The reciprocity principle in lunar photometry. Astrophys J 93:403–410CrossRefGoogle Scholar
  62. Neison E (1876) The Moon and the condition and configuration of its surface. Longmans, Green and Co, LondonGoogle Scholar
  63. Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T (1977) Geometrical considerations and nomenclature for reflectance, vol 160. National Bureau of Standards Monograph, Washington, DCGoogle Scholar
  64. Pinty B, LattanzioA MJV, Verstraete MM, Gobron N, Taberner M, Widlowski J-L, Dickinson RE, Govaerts Y (2005) Coupling diffuse sky radiation and surface Albedo. J Atmos Sci 62:2580–2591CrossRefGoogle Scholar
  65. Plescia J (2009) Appearance of lunar features under different illuminations. Lunar Networks.
  66. Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168. doi:10.1038/nature03436CrossRefGoogle Scholar
  67. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G et al (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401. doi:10.1126/science.1123013CrossRefGoogle Scholar
  68. Poulsen CJ (2003) Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology 31(6):473–476CrossRefGoogle Scholar
  69. Prockter L, Schenk PM (2005) Origin and evolution of Castalia Macula, an anomalous young depression on Europa. Icarus 177:305–326CrossRefGoogle Scholar
  70. Prockter LM, Head JW, Pappalardo RT, Senske DA, Neukum G et al (1998) Dark Terrain on Ganymede: geological mapping and interpretation of Galileo Regio at high resolution. Icarus 135:317–344CrossRefGoogle Scholar
  71. Prockter LM, Ernst CM, Denevi BW, Chapman CR et al (2010) Evidence for young volcanism on Mercury from the third MESSENGER Flyby. Science 329:668–671. doi:10.1126/science.1188186CrossRefGoogle Scholar
  72. Rogers JH (1995) The giant planet Jupiter. Cambridge University Press, New YorkGoogle Scholar
  73. Rogers AD, Bandfield JL, Christensen PR (2007) Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. J Geophys Res 112:E02004. doi:10.1029/2006JE002726Google Scholar
  74. Ronca LB (1970) An introduction to the geology of Mars. Proc Geol Assoc 81(1):111–128CrossRefGoogle Scholar
  75. Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res 107(E12):5127. doi:10.1029/2001JE001580CrossRefGoogle Scholar
  76. Sagan C, Pollack JB, Veverka J (1972) Variable features on Mars: preliminary Mariner 9 television results. Icarus 17:346–372CrossRefGoogle Scholar
  77. Schröter JH (1791) Selenotopographische Fragmente. CG Fleckeinsen, LilenthalGoogle Scholar
  78. See TJJ (1910) The origin of the so-called craters on the Moon by the impact of satellites, and the relation of these satellite indentations to the obliquities of the planets. Publ Astron Soc Pac 22(130):13–20CrossRefGoogle Scholar
  79. Shkuratov Y, Starukhina L, Hoffmann H, Arnold G (1999) A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137:235–246CrossRefGoogle Scholar
  80. Stebbins J (1927) The light variations of the satellites of Jupiter and their applications to measures of the solar constant. Lick Obs Bull 13:1–11Google Scholar
  81. Strugnell NC, Lucht W (2001) An algorithm to infer continental-scale Albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J Clim 14:1360–1376CrossRefGoogle Scholar
  82. Thomas N (2005) Lecture 7: surface photometry. The planet, Mars. Physikalisches Institut, University, Bern.
  83. Thomas N, Stelter R, Ivanov A, Bridges NT, Herkenhoff KE, McEwen AS (2011) Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planetary and Space Science 59(13):1281–1292CrossRefGoogle Scholar
  84. Ulivi P, Harland DM (2007) Robotic exploration of the Solar System. Part 1. Springer-Praxis, Chichester UKGoogle Scholar
  85. Veverka J (1973) Titan: polarimetric evidence for an optically thick atmosphere. Icarus 18:657–660CrossRefGoogle Scholar
  86. Veverka J, Goguen J, Yang S, Elliot JL (1978a) Near-opposition limb darkening of solids of planetary interest. Icarus 33:368–379CrossRefGoogle Scholar
  87. Veverka J, Goguen J, Yang S, Elliot JL (1978b) Scattering of light from particulate surfaces I. A laboratory assessment of multiple-scattering effects. Icarus 34:406–414CrossRefGoogle Scholar
  88. Veverka J, Thomas P, Johnson V, Matson DL, Housen K (1986) The physical characteristics of satellite surfaces. In: Burns J, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 342–402Google Scholar
  89. Vixie G, Barnes JW, Bow J, Le Mouélic S, Rodriguez S, Brown RH, Cerroni R, Tosi F, Buratti B, Sotin C, Filacchione G, Capaccioni F, Coradini A (2012) Mapping Titan’s surface features within the visible spectrum via Cassini VIMS. Planet Space Sci 60(1):52–61CrossRefGoogle Scholar
  90. Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112CrossRefGoogle Scholar
  91. Wood CA (2003) The modern moon. A personal view. Sky Publishing, Cambridge, MAGoogle Scholar
  92. Wood CA (2007) Lunar brightness. In:
  93. Zakharov A (2012) Dust at the Martian Moons and in the circummartian space. The meteoroid flux in the Martian satellite system. MIIGAiK MExLab workshop. Moscow, 5–6 July 012Google Scholar
  94. Zinzi A, Palomba E, Rinaldi G, D’Amore M (2010) Effect of atmospheric dust loading on Martian albedo features. Icarus 208:590–597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Péter Kardeván
    • 1
    Email author
  • Henrik Hargitai
    • 2
  • Angelo Zinzi
    • 3
  • Francesca Esposito
    • 4
  1. 1.retired from Department of Environmental GeologyGeological and Geophysical Institute of HungaryBudapestHungary
  2. 2.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary
  3. 3.ASI Science Data Center / INAF - Osservatorio Astronomico di RomaRomeItaly
  4. 4.INAF-Osservatorio Astronomico di CapodimonteNaplesItaly