Longitudinal Dunes (or Linear Dunes)

  • Jani RadebaughEmail author
  • Priyanka Sharma
  • Jarmo Korteniemi
  • Kathryn E. Fitzsimmons
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_460-2


Elongated ridges of aeolian sediment, forming approximately parallel to the resultant vector of long-term sand-shifting winds or the prevailing wind direction.



Linear dune, linear ridge, and sand ridge. The terms seif and linear and longitudinal are sometimes used interchangeably, although longitudinal dune is a morphodynamic term, compared to linear (or seif) dune, which are morphologic-descriptive terms that can be used even when formative processes are not known (Rubin and Hunter 1985). The term “linear dune” refers to the group of straight and sinuous longitudinal dunes. However, straight longitudinal dunes are generally referred to as “linear dunes.” Less frequently, they are referred to as “linear ridges” (not recommended) or “sand ridges” to distinguish them from sinuous seif dunes. The term “Linear ridge types (various origins)” may also refer to any elongated, straight,...


Sand Ridge Wind Regime Sand Transport Dune Field Crest Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Ahrens CJ, Titus TN (2013) Mineral analysis of Martian dunes: sediment composition of Martian dune fields using the thermal emission spectrometer. 44th Lunar Planet Sci Conf, LPI contribution no. 1719, p 2096Google Scholar
  2. Andreotti B, Fourrière A, Ould-Kaddour F, Murray B, Claudin P (2009) Giant aeolian dune size determined by the average depth of the atmospheric boundary layer. Nature 457:1120–1123. doi:10.1038/nature07787CrossRefGoogle Scholar
  3. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  4. Barnes JW, Brown RH, Soderblom L, Sotin C, Le Mouèlic S, Rodriguez S, Jaumann R, Beyer RA, Buratti BJ, Pitman K, Baines KH, Clark R, Nicholson P (2008) Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus 195:400–414. doi:10.1016/j.icarus.2007.12.006CrossRefGoogle Scholar
  5. Blom R, Elachi C (1981) Spaceborne and airborne imaging radar observations of sand dunes. J Geophys Res 86(B4):3061–3073. doi:10.1029/JB086iB04p03061CrossRefGoogle Scholar
  6. Blom R, Elachi C (1987) Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images. J Geophys Res 92(B8):7877–7889. doi:10.1029/JB092iB08p07877CrossRefGoogle Scholar
  7. Blumberg DG (1998) Remote sensing of desert dune forms by polarimetric synthetic aperture radar (SAR). Remote Sens Environ 65(2):204–216CrossRefGoogle Scholar
  8. Bourke MC (2006) A new model for linear dune formation: merged Barchan convoys on Mars. Lunar Planet Sci Conf XXXVI, abstract #2432, HoustonGoogle Scholar
  9. Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121:1–14CrossRefGoogle Scholar
  10. Breed CS, Grow T (1979) Morphology and distribution of dunes in sand seas observed by remote sensing. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 253–304Google Scholar
  11. Breed CS, Fryberger SC, Andrews S, McCauley C, Lennartz F, Gebel D, Horstman K (1979) Regional studies of sand seas using LANDSAT (ERTS) imagery. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 305–398Google Scholar
  12. Bristow CS, Bailey SD, Lancaster N (2000) The sedimentary structure of linear sand dunes. Nature 406(6791):56–59CrossRefGoogle Scholar
  13. Bullard JE, Thomas DSG, Livingstone I, Wiggs G (1995) Analysis of linear sand dune morphological variability, southwestern Kalahari Desert. Geomorphology 11:189–203CrossRefGoogle Scholar
  14. Cardinale M, Komatsu G, Flahaut J (2011) Large dark dunes in Moreux Crater, Mars: insights into their geometry and composition. American Geophysical Union, fall meeting 2011, abstract #P23A-1703Google Scholar
  15. Cornwall C, Titus TN (2010) Compositional analysis of 21 Martian equatorial dune fields and possible sand sources. Second international planetary dunes workshop: planetary analogs – integrating models, remote sensing, and field data, LPI contribution no. 1552, pp 17–18Google Scholar
  16. Craddock RA (2011) Aeolian processes on the terrestrial planets: recent observations and future focus. Prog Phys Geogr 1–15. doi:10.1177/0309133311425399Google Scholar
  17. Edgett KS, Blumberg DG (1994) Star and linear dunes on Mars. Icarus 112(2):448–464CrossRefGoogle Scholar
  18. Edgett KS, Malin MC (2000) MGS MOC images of seif dunes in the north polar region of Mars. 31st Lunar Planet Sci Conf, abstract #1070, HoustonGoogle Scholar
  19. El-Baz F (1981) Formation and evolution of surface features in Egypt’s Western desert: a summary of Martian analogies, Third international colloquium on Mars, LPI contribution 441, 68Google Scholar
  20. El-Baz F, Breed CS, Grolier MJ, McCauley JF (1979) Eolian features in the western desert of Egypt and some applications to Mars. J Geophys Res 84:8205–8221. doi:10.1029/JB084iB14p08205CrossRefGoogle Scholar
  21. Feldman WC, Bourke MC, Elphic RC, Maurice S, Prettyman TH, Lawrence DJ, Hagerty JJ (2007) Constraints on the structure and composition of sand dunes within Olympia Undae using Mars Odyssey neutron spectrometer data. 38th Lunar Planet Sci Conf, LPI contribution no. 1338, p 2311Google Scholar
  22. Fitzsimmons KE, Magee JW, Amos K (2009) Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts, Australia: implications for reconstructing palaeoenvironmental conditions. Sediment Geol 218:61–73CrossRefGoogle Scholar
  23. Fryberger SG (1979) Dune forms and wind regime. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 137–170Google Scholar
  24. Gaber A, Koch M, El-Baz F (2009) Textural and compositional characterization of Wadi Feiran deposits, Sinai Peninsula, Egypt, using radarsat-1, PALSAR, SRTM and ETM + Data. Remote Sens 2(1):52–75. doi:10.3390/rs2010052CrossRefGoogle Scholar
  25. Gardin E, Allemand P, Quantin C, Silvestro S, Delacourt C (2012) Dune fields on Mars: recorders of a climate change? Planet Space Sci 60:314–321CrossRefGoogle Scholar
  26. Glenn M (1979) Glossary. In: McKee ED (ed) A study of global sand seas. United States Government Printing Office, Washington, DC, pp 399–408Google Scholar
  27. Greeley R, Arvidson RE, Elachi C, Geringer MA, Plaut JJ, Saunders RS, Schubert G, Stofan ER, Thouvenot EJP, Wall SD (1992) Aeolian features on Venus – preliminary Magellan results. J Geophys Res 97(E8):13319–13345CrossRefGoogle Scholar
  28. Hanna SR (1969) The formation of longitudinal sand dunes by large helicoidal eddies in the atmosphere. J Appl Meteorol 8:874–883CrossRefGoogle Scholar
  29. Harari Z (1996) Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. J Appl Geophys 36(1):43–52. doi:10.1016/S0926-9851(96)00031-6CrossRefGoogle Scholar
  30. Heggy E, Clifford SM, Farr TG, Dinwiddie CL, Grimm RE (2006) Radar investigations of planetary and terrestrial environments. J Geophys Res 111, E6, CiteID E06S01. doi:10.1029/2006JE002759Google Scholar
  31. Hesse PP (2010) The Australian desert dunefields: formation and evolution in an old, flat, dry continent. In: Bishop P, Pillans B (eds) Australian landscapes. Geological Society, London, pp 141–163Google Scholar
  32. Hollands CB, Nanson GC, Jones BG, Bristow CS, Price DM, Pietsch TJ (2006) Aeolian–fluvial interaction: evidence for Late Quaternary channel change and wind-rift linear dune formation in the northwestern Simpson Desert, Australia. Quat Sci Rev 25:142–162CrossRefGoogle Scholar
  33. Hugenholtz CH, Levin N, Barchyn TE, Baddock MC (2012) Remote sensing and spatial analysis of aeolian sand dunes: a review and outlook. Earth Sci Rev 111(3):319–334. doi:10.1016/j.earscirev.2011.11.006CrossRefGoogle Scholar
  34. King D (1960) The sand ridge deserts of South Australia and related aeolian landforms of the Quaternary arid cycles. Trans R Soc S Aust 83:99–108Google Scholar
  35. Lancaster N (1995) Dune morphology and morphometry. In: Geomorphology of desert dunes. Routledge London and New YorkGoogle Scholar
  36. Lancaster N (2005) Aeolian erosion, transport and deposition,뭱in뭱Selley, R.C., Robin, L., Cocks, M., and Plimer, I.R., eds., Encyclopedia of Geology: Oxford, Elsevier, p. 612–627Google Scholar
  37. Lancaster N (2006) Linear dunes on Titan. Science 312(5774):702–703. doi:10.1126/science.1126292CrossRefGoogle Scholar
  38. Lancaster N, Gaddis L, Greeley R (1992) New airborne imaging radar observations of sand Dunes: Kelso Dunes, California. Remote Sens Environ 39(3):233–238. doi:10.1016/0034-4257(92)90088-2CrossRefGoogle Scholar
  39. Lancaster N, Kocurek G, Singhvi A, Pandey V, Deynoux M, Ghienne J, Lo K (2002) Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania. Geology 30:991–994CrossRefGoogle Scholar
  40. Le Gall A, Janssen MA, Wye LC, Hayes AG, Radebaugh J, Savage C, Zebker H, Lorenz RD, Lunine JI, Kirk RL, Lopes RMC, Wall S, Callahan P, Stofan ER, Farr T, The Cassini Radar Team (2011) Cassini SAR, radiometry, scatterometry and altimetry observations of Titan’s dune fields. Icarus 213:608–624. doi:10.1016/j.icarus.2011.03.026CrossRefGoogle Scholar
  41. Le Gall A, Hayes AG, Ewing R, Janssen MA, Radebaugh J, Savage C, Encrenaz P, The Cassini Radar Team (2012) Latitudinal and altitudinal controls of Titan’s dune field morphometry. Icarus 217:231–242. doi:10.1016/j.icarus.2011.10.024CrossRefGoogle Scholar
  42. Lee P, Thomas PC (1995) Longitudinal dunes on Mars: relation to current wind. J Geophys Res 100(E3):5381–5395. doi:10.1029/95JE00225CrossRefGoogle Scholar
  43. Lorenz RD, Radebaugh J (2009) Global pattern of Titan’s dunes: radar survey from the Cassini prime mission. Geophys Res Lett 36(3):L03202. doi:10.1029/2008GL036850CrossRefGoogle Scholar
  44. Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312(5774):724–727CrossRefGoogle Scholar
  45. McKee ED (1979) Introduction to a study of global sand seas. In: McKee ED (ed) A study of global sand seas. U.S. geological survey professional paper 1052. United States Department of the Interior, Washington DCGoogle Scholar
  46. Neish CD, Lorenz RD, Kirk RL, Wye LC (2010) Radarclinometry of the sand seas of Africa’s Namibia and Saturn’s moon Titan. Icarus 208:385–394. doi:10.1016/j.icarus.2010.01.023CrossRefGoogle Scholar
  47. Parteli EJR, Duran O, Tsoar H, Schwammle V, Herrmann H (2009) Dune formation under bimodal winds. Proc Natl Acad Sci U S A 106:52. doi:10.1073/pnas.0808646106CrossRefGoogle Scholar
  48. Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, LondonCrossRefGoogle Scholar
  49. Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G, Reffet E, Kirk RL, Lopes RM, Stofan ER, Soderblom L, Allison M, Janssen M, Paillou P, Callahan P, Spencer C, The Cassini Radar Team (2008) Dunes on Titan observed by Cassini Radar. Icarus 194:690–703. doi:10.1016/j.icarus.2007.10.015CrossRefGoogle Scholar
  50. Radebaugh J, Lorenz R, Farr T, Paillou P, Savage C, Spencer C (2010) Linear dunes on Titan and earth: initial remote sensing comparison. Geomorphology 121:122–132CrossRefGoogle Scholar
  51. Rodriguez SA, Garcia A, Lucas T, Appéré A, Le Gall E, Reffet L, Le Corre S, Le Mouélic T, Cornet S, Courrech du Pont C, Narteau O, Bourgeois J, Radebaugh K, Arnold JW, Barnes K, Stephan R, Jaumann C, Sotin RH, Brown RD, Lorenz EP, Turtle (2014). Global mapping and characterization of Titan’s dune fields with Cassini: correlation between RADAR and VIMS observations. Icarus 230, 168–179.Google Scholar
  52. Rubin DM, Hesp PA (2009) Multiple origins of linear dunes on Earth and Titan. Nat Geosci 2. doi:10.1038/NGEO610Google Scholar
  53. Rubin DM, Hunter RE (1985) Why deposits of longitudinal dunes are rarely recognised in the geologic record. Sedimentology 32:147–157CrossRefGoogle Scholar
  54. Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237:276–278CrossRefGoogle Scholar
  55. Schatz V, Tsoar H, Edgett KS, Parteli EJR, Herrmann HJ (2006) Evidence for indurated sand dunes in the Martian north polar region. J Geophys Res-Planets 111:E04006Google Scholar
  56. Sharma P, Heggy E, Farr TG, Radebaugh J (2013) Exploring the inner structure of Titan’s dunes: implications for understanding Paleo-Wind regimes. In: 44th Lunar Planet Sci Conf, LPI contribution no. 1719, p 1821Google Scholar
  57. Silvestro S, Vaz D, Ewing E, Rossi AP, Fenton LK, Michaels TI, Flahaut J, Geissler PE (2013) Pervasive Aeolian activity along curiosity’s traverse in Gale crater (Mars). Geology. doi:10.1130/G34162.1Google Scholar
  58. Soderblom LA, Baines KH, Buratti BJ, Elachi C, Janssen MA, Lopes RM, Wall SD (2007) Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the Huygens Probe Landing Site. Planet Space Sci 55:2025–2036. doi:10.1016/j.pss.2007.04.014CrossRefGoogle Scholar
  59. Thomas D (1989) Arid zone geomorphology. Belhaven, LondonGoogle Scholar
  60. Tirsch D (2008) Dark dunes on Mars. Dissertation. Freie Universität, BerlinGoogle Scholar
  61. Tokano T (2010) Relevance of fast westerlies at equinox for the eastward elongation of Titan’s dunes. Aeolian Res 2(2):113–127CrossRefGoogle Scholar
  62. Tsoar H (1978) The dynamics of longitudinal sand dunes: final technical report. European Research Office, US Army, LondonGoogle Scholar
  63. Tsoar H (1983) Dynamic processes acting on a longitudinal (seif) sand dune. Sedimentology 30:567–578CrossRefGoogle Scholar
  64. Tsoar H (2001) Types of Aeolian sand dunes and their formation. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics, vol 582, Lecture notes in physics. Springer-Verlag Berlin Heidelberg, p. 403–429Google Scholar
  65. Tsoar H, Greeley R, Peterfreund AR (1979) Mars: the north polar sand sea and related wind patterns. J Geophys Res 84:8167–8180CrossRefGoogle Scholar
  66. Tsoar H, Blumberg DG, Stoler Y (2004) Elongation and migration of sand dunes. Geomorphology 57:293–302CrossRefGoogle Scholar
  67. Tsoar H (2008) Linear dunes on Earth and Mars - Similarity and Dissimilarity. Planetary Dunes Workshop, Alamogordo, New Mexico, abstract 7001Google Scholar
  68. Warner NH, Farmer JD (2008) Importance of aeolian processes in the origin of the north polar chasmata, Mars. Icarus 196(2):368–384CrossRefGoogle Scholar
  69. Wasson RJ, Hyde R (1983) Factors determining desert dune type. Nature 304:337–339CrossRefGoogle Scholar
  70. Wasson RJ, Fitchett K, Mackey B, Hyde R (1988) Large-scale patterns of dune type, spacing and orientation in the Australian continental dunefield. Aust Geogr 19:89–104CrossRefGoogle Scholar
  71. Wiggs G (2001) Desert dune processes and dynamics. Progr Phys Geogr 25:53–79CrossRefGoogle Scholar
  72. Wopfner H, Twidale CR (2001) Australian desert dunes: wind rift or depositional origin? Aust J Earth Sci 48:239–244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jani Radebaugh
    • 1
    Email author
  • Priyanka Sharma
    • 2
  • Jarmo Korteniemi
    • 3
  • Kathryn E. Fitzsimmons
    • 4
  1. 1.Department of Geological SciencesBrigham Young UniversityProvoUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Earth and Space Physics, Department of PhysicsUniversity of OuluOuluFinland
  4. 4.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany