Butterfly Ejecta

  • Robert R. HerrickEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_27-2


Impact crater ejecta morphology with an uprange and a downrange forbidden zone.


Asymmetric ejecta; Bilateral symmetric ejecta; Downrange and uprange forbidden zone (crater); Fly wing (crater)

A type of ejecta often found in association with an elliptical crater (oblique impact)

Variations in formation and modification:
  1. (1)

    Dry ejecta crater emplaced solely ballistically (Mercury [Fig. 1], Moon [Fig. 2]).

  2. (2)

    Butterfly ejecta emplaced ballistically and then modified by surface flow (Mars) (Fig. 3) (Herrick and Hessen 2006). They can have smooth or textured blanket and may possess rampart.

  3. (3)

    Butterfly ejecta formed on Venus, in a dense and hot atmosphere (Venus) (Fig. 4).



Impact Angle Impact Crater Oblique Impact Butterfly Wing Crater Ejecta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bottke WF, Love SG, Tytell D, Glotch T (2000) Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus 145:108–121CrossRefGoogle Scholar
  2. Gault DE, Wedekind JA (1978) Experimental studies of oblique impacts. Proc Lunar Planet Sci Conf 9:3843–3875Google Scholar
  3. Herrick RR, Forsberg-Taylor NK (2003) The shape and appearance of craters formed by oblique impact on the Moon and Venus. Meteorit Planet Sci 38(11):1551–1578CrossRefGoogle Scholar
  4. Herrick RR, Hessen KK (2006) The planforms of low-angle impact craters in the northern hemisphere of Mars. Meteorit Planet Sci 41(Nr 10):1483–1495CrossRefGoogle Scholar
  5. Herrick RR, Yamamoto S, Barnouin-Jha OS, Sugita S, Matsui T (2008) Constraints from laboratory experiments on crater excavation and formation of an uprange forbidden zone in an oblique impact. Lunar Planet Sci Conf XXXIX, abstract #2305, HoustonGoogle Scholar
  6. Moore HJ (1971) Craters produced by missile impacts. J Geophys Res 76(23):5750–5755CrossRefGoogle Scholar
  7. Poelchau MH (2010) The subsurface structure of oblique impact craters. Dissertation, Freien Universität BerlinGoogle Scholar
  8. Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J Geophys Res Planet 117:E05004. doi:10.1029/2011JE003966Google Scholar
  9. Schultz PH (1992) Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. J Geophys Res 97:16183–16248CrossRefGoogle Scholar
  10. Schultz PH, Anderson RA (1996) Asymmetry of the Manson impact structure: evidence for impact angle and direction. In: Koeberl C, Anderson RR (eds) The Manson impact structure, Iowa: anatomy of an impact crater, vol 302, Special paper. Geological Society of America, Boulder, pp 397–417Google Scholar
  11. Schultz PH, Eberhardy CA, Ernst CM, A'Hearn MF, Sunshine JM, Lisse CM (2007) The deep impact oblique impact cratering experiment. Icarus 190:295–333. doi:10.1016/j.icarus.2007.06.006Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Geophysical InstituteUniversity of AlaskaFairbanksUSA